Adtpp: lightweight efficient safe polymorphic
algebraic data types for C

Lee Naish, Peter Schachte and Aleck MacNally

University of Melbourne, Melbourne 3010, Australia
{1lee,schachte}@unimelb.edu.au

Abstract. Adtpp is an open-source tool that adds support for algebraic
data types (ADTs) to the C programming language. ADTs allow more
precise description of program types and more robust handling of data
structures than is directly supported by C. ADT definitions and other
declarations are put in a file that is preprocessed by adtpp to produce a
C header (“.h”) file which can be included in C source files. The gener-
ated header file contains C type definitions, macros, and inline functions
that support type-safe construction, deconstruction, and pattern match-
ing of ADT values, while avoiding unsafe operations such as casts, and
avoiding the risk of errors such as dereferencing NULL pointers and ac-
cessing inappropriate fields of unions. Values are represented efficiently,
using techniques from the implementation of declarative languages. For
many simple data types, the representation is identical to a direct imple-
mentation in C, with no loss of efficiency. For more complex types, the
adtpp representation is more efficient than common C representations,
while preserving type safety and convenience. As an example, we present
a new variation of 234-trees which is very compact. Adtpp also supports
parametric polymorphism such as defining a type “list of ¢”, where ¢ can
be any ADT, and generic functions such as length. However, compared
to typical declarative languages, polymorphic code is somewhat more
verbose, due to our reliance on the limited type checking available in C.
Keywords: Algebraic data types, C language extension, generics, poly-
morphism, safety, static checking, open-source

1 Introduction

Algebraic data types (ADTs') combine other types. They were first introduced
in the Hope programming language [1] and have been adopted in many other
declarative languages, such as ML [2], Haskell [3] and Mercury [4]. An ADT
value consists of one of a number of alternative data constructors, each of which
has a number of arguments or fields of particular types. The choice of data
constructor gives a “sum” (“discriminated union”, “disjoint union” or “variant
type”) and the arguments of the data constructor give a “product” (“tuple” or
“record”). For example, an ADT representing a bank account may have credit
or savings as the data constructors, where credit has arguments representing the

! This acronym is also used for abstract data types, unrelated to our use here.

card number, security code, credit limit and balance, and savings has arguments
representing an account number, bank branch number and balance. C supports
product types using structs. Undiscriminated unions are also supported, but
discriminated unions (distinguishing between different data constructors) require
extra programming, which can be error prone.

Most languages that support ADTs also support polymorphism. By using a
type variable ¢, the type list of ¢ can be defined as Nil (representing an empty
list) or Cons, with arguments of type t and list of ¢, representing the head and
tail, respectively. This polymorphic type definition can then be instantiated to
define lists of integers, lists of bank accounts, etc. The polymorphic type can also
be used in polymorphic (generic) code, such as a length function that computes
the length of a list of any type of element. The only support for polymorphism
in C is the generic type pointer to void. Polymorphic code can be written and
used by casting values to and from the type pointer to void, which is also error
prone.

This paper describes the adtpp tool we have developed, which supports ADT's
in C code. It is similar to the adt tool [5] but gives improved compile-time
checking, more compact data representations and much more extensive support
for polymorphism. Our goals include:

— Primarily we want to obtain the expressiveness and type safety of
ADTs in C. Most notably, compared to the types supported in C, ADTs
allow us to more precisely describe the values we want to represent. Having
more precise types allows us to avoid some common programming errors.
For example, the type system of C does nothing to ensure that a pointer is
not NULL before allowing it to be dereferenced. Even when 1istx is NULL,
representing the empty list, C allows evaluation of listx->head, leading
to a fatal runtime error. For the adtpp version of lists, the programming
constructs provided do not allow access to the head of a list in a context
where it may be empty, because Nil has no argument representing the head.
Similarly, in C a function can return a value plus an error flag, but C allows
the value to be used even if the error flag is set. An ADT that represents
either a value or an error would not permit such a mistake.

— We want support for polymorphic types (and their instances) and
functions. This allows significant code re-use and abstraction. With poly-
morphic code it is particularly important that type safety is ensured at
compile time.

— We want to maintain the efficiency of C. Our implementation imposes
essentially no efficiency penalty compared with direct implementation in
C. For example, a linked list expressed as an ADT in the natural way is
represented in memory in exactly the same way as a linked list expressed in
the most natural way using C types, with an empty list represented as NULL
and a non-empty list represented as a pointer to a struct containing the
head and tail. For more complex ADTSs, the adtpp implementation not only
provides type safety, it also allows more concise definition and manipulation

of types than in plain C, and most surprisingly, tends to be more efficient,
both in time and space, than a typical direct implementation in C.

— We aim for a lightweight implementation, to improve portability,
maintainence, and ease of integration. All adtpp does is produce a
C header (“h”) file. It does not process C source files and there are no
changes to the C compiler. This constraint does affect the ability to perform
some checking, leading to somewhat more verbose code in the presence of
polymorphism, and somewhat less informative error messages.

— Finally, we would like to be able to share non-trivial user-defined
data types across language boundaries. Many declarative languages
that support ADTs have interfaces to C that only support simple data types
such as integers and floats. By ensuring adtpp uses the same representation
as a particular declarative language, a C interface can allow other data types
to be passed. This is done in the Pawns language [6], which also uses adtpp
as an integral part of the implementation — it compiles to C using adtpp.

We have not studied the impact of using adtpp on large scale software pro-
duction but Hartel and Muller [5] discuss the use of the (similar) adt tool and
give examples where around 20% of the code for a project is produced by the
tool. Although adtpp does not produce as many primitives for each ADT, the
representation of values is often more complex and the better support for poly-
morphism helps with code re-use. Of course the savings will vary according to the
data structures used in the project. Perhaps of more importance is the elimina-
tion of certain classes of errors, such as dereferencing NULL pointers, and adtpp
does have advantages over adt in this respect. Adtpp also allows very simple in-
tegration with automatic memory management tools, avoiding another class of
errors. Support for ADTs can also have a positive influence on the choice of data
structures used in a project. For example, using a (dynamically allocated) ADT
rather than an array avoids size limitations and index out of bounds errors. We
believe adtpp can significantly increase productivity of C programmers who are
familiar with ADT's and their benefits, while retaining excellent performance.

In what follows, we assume the reader is familiar with ADTs and their ben-
efits. The rest of this paper is structured as follows. Section 2 gives an overview
of adtpp and describes how monomorphic ADTs are defined. Section 3 describes
how such types can be used in C code. Section 4 discusses support for polymor-
phism and higher order code (“pointers to functions” in C terminology). Section
5 describes the implementation of adtpp, including the representation of ADTs.
Section 6 discusses space and time performance of code that uses adtpp. Section
7 discusses additional related work. Section 8 describes possible future extensions
to adtpp. Section 9 concludes.

2 ADT declarations

The adtpp tool inputs ADT definitions and other declarations from an “ADT
file”, whose name has an extension “.adt”, and outputs a C header (“.h”) file

that contains declarations and definitions of ordinary C functions, macros and
types (struct and typedef) that support the ADTs. Any C code that uses
the ADTs need only #include the generated “.h” file, capitalising on C’s type
system to detect errors in ADT use. The adtpp tool does not process the C code
at all, so it does not require a parser for C. The following command would create
mytypes.h from mytypes.adt (appropriate generic rules for build tools such as
make are easy to construct):

adtpp mytypes.adt

In this section we describe monomorphic ADT definitions. Section 4 describes
polymorphism and the other declarations allowed in ADT files. ADT definitions
provide the same information as in other languages such as Hope, ML and Haskell
— the name of the type and, for each data constructor, the name and the number
and types of arguments (each data constructor name can only appear in one
type). However, the syntax is inspired by C. Braces and semi-colons are used,
white-space is ignored and context (rather than upper/lower case) is used to
distinguish types and data constructors. Here we use upper case for the first
letter of data constructor names, but users can adopt their own conventions.

data point {
Point (double, double);

}
data color {
Red();
Blue();
Green();
}
data tree {
Empty O ;
Node(long, tree, tree);
}
data quad_roots {
Noroot();
Oneroot (double) ;
Tworoot (double, double);
}

Fig. 1. Monomorphic ADT definitions in adtpp syntax

Figure 1 shows four ADT definitions. The first type, point can be used to
represent the Cartesian coordinates of a point in two dimensions. It has a single
data constructor, Point with two arguments, both of type double. This is a
simple example of a product type that can just as easily be implemented with
a C struct containing two doubles. ADT definitions are prefixed with the data
keyword and type and data constructor names must be valid C identifiers, and

are case-sensitive. It is possible to use any C type as the type of an argument
of a data constructor, but in general it requires the use of typedef since the
C syntax for compound types such as arrays and structs are not supported by
adtpp. For example, we could replace double by mytype in the definition and
adtpp would process the definition in the same way. Of course mytype must then
be defined appropriately using typedef (or #define) before the generated “.h”
file is included.

The type color is a sum type with three alternative data constructors and
can easily be implemented in C with an enum. Type tree is a sum of products
so representation is more complex. However, because there are only two data
constructors and only one has arguments, it can be implemented in C using
a pointer to a struct containing a long and two trees (representing a Node).
Empty can be represented as NULL, a special value that can be distinguished from
other pointer values in C. Type quad_roots also takes the general form of a sum
of products but cannot so easily be represented in C for two reasons: there are
more than two data constructors (so we can’t determine the data constructor by
simply comparing with NULL) and there is more than one data constructor with
arguments (NULL pointers cannot contain other values). We discuss how it can
be represented in C in Section 5.

3 Using ADTs in C code

Each ADT defined in the ADT file results in a C type of the same name de-
fined (using typedef) in the “.h” file produced. The types are intended to be
abstract in the sense that the programmer does not need to know how they are
represented, but just has access to certain operations on the types. The opera-
tions either construct a value of the type (that may allocate memory), free the
memory used by the value of a type or deconstruct (and/or test) a value of the
type. These are described next.

3.1 Constructing ADT values

The only way to construct an ADT value is via the data constructors of the type.
These are used as C functions/macros in C source code. Appropriate arguments
with correct types must be supplied. Figure 2 gives an example of declaring and
constructing values of type tree. Memory is allocated using malloc by default,
but this can be overridden by defining the macro ADT_MALLOC to be an alternative
function with equivalent behaviour.

3.2 Freeing ADT values

For each ADT defined there is a free function whose name is the type name with
“_free” appended, which (by default) calls free as required to reclaim memory.
The free function does not recursively free values within data constructors. Thus
a call such as tree_free(t3) at the end of the code in Figure 2 would free the

#include "mytypes.h" // generated by adtpp from mytypes.adt

tree t1, t2, t3;

t1 = Empty();

t2 = Node(1L, t1, Empty());
t3 = Node(2L, t2, t2);

Fig. 2. Declaring and constructing values of type tree in C code

memory for the top level Node of the tree but not affect the memory allocated
for t2.

An attractive alternative to explicitly coded memory management is to use
some form of automatic memory management. Adtpp can be used very simply
with the Boehm-Weiser conservative garbage collector [7]. All that is required is
a compilation flag to link the appropriate library and the following definitions
before the header file is included:

#define ADT_MALLOC(s) GC_MALLOC(s)
#define ADT_FREE(s) GC_FREE(s)

With this option the memory taken by ADT values that are no longer used
is reclaimed automatically and calling the “_free” functions is not required.
This simplifies coding and greatly reduces the chance of bugs related to memory
management, including memory leaks. Our small-scale experiments indicate it
can improve performance as well.

3.3 Testing and deconstructing ADT values

In many declarative languages pattern matching is used to both test if a value
has a particular data constructor and extract the argument values. Successful
pattern matching results in the argument values being used to initialize local
variables that can be used in a section of code that is executed, whereas failure
of pattern matching results in the transfer of control to other code where those
variables are undefined. Similar constructs are supported in adtpp. One class is
based on if-then-else, which can be the most convenient if there are few data
constructors being tested for. The other is based on switch, and can be more
efficient and convenient when there are larger numbers of data constructors
tested. Both force the programmer to write code that is naturally safe. For
example, the left subtree of a tree can only be accessed by using a variable in a
Node pattern that is matched with the subtree. In C, if t3 is a tree represented
by a pointer to a struct, t3->1left is potentially unsafe because t3 may be NULL.

Figure 3 shows two uses of if-then-else constructs for the tree type. The
if _Node primitive tests if t3 is a Node. If the match succeeds, the “if” branch
is executed, otherwise the “else” branch is executed. Before executing the “if”
branch, val, t1 and tr are initialized to the three Node arguments, respectively.
These three variables are automatically declared just for the “if” branch and

have type long, tree and tree, respectively. The alternative coding is slightly
more verbose (and potentially a little less efficient). It first tests for Empty and
uses else_if_Node to extract the arguments (note that t3 is not used here —
else_if primitives test the same variable as the initial if primitive). There are
also if_Node_ptr and else_if_Node_ptr primitives that bind the last three
arguments to pointers to the respective arguments of a Node, allowing update of
these components.

if_Node(t3, val, tl, tr) if _Empty (t3)
else() else_if_Node(val, tl, tr)
end_if () end_if ()

Fig. 3. Two uses of adtpp if-then-else constructs in C code

long sum_tree(tree t) {
switch_tree(t)
case_Empty ()
return 0;
case_Node(val, tl, tr)
return val + sum_tree(tl) + sum_tree(tr);
end_switch()

Fig. 4. Summing tree elements using adtpp switch

Adtpp generates if and else_if primitives for each data constructor of each
ADT. The syntax supported is less C-like than we would wish for, but is the
best we have been able to achieve with the standard C preprocessor and the
goal of forcing the user to write safe code. We discuss this further in Section
5. The switch primitive is illustrated in Figure 4, which gives a function that
returns the sum of the elements in a tree. Pointers to arguments of a Node can
be obtained by using case_Node_ptr instead of case_Node, and default() can
be used as a default label. As with the if-then-else primitives, val, t1 and tr
are automatically declared (with limited scope) and initialized. The type of each
case must match the type of the switch. In Section 7 we compare this to similar
code supported by the adt tool.

4 Polymorphism and higher order functions

Typical declarative programming languages that support ADTs also support
parametric polymorphism — definitions of generic types such as “list of 7,
where t can be instantiated to any type, and generic functions such as reversing
a list of t. There can also be multiple type parameters, for example, keys of
type k and values of type v. In regular C, this style of code typically requires
use of pointers to void and casts (which are unsafe). Declarative languages also
support higher order programming — functions can be incorporated into data
structures, passed as arguments and returned as results. In C we normally refer
to “pointers to functions” rather than functions, which is a lower level view (the
way such functions are represented is with pointers). Adtpp supports paramet-
ric polymorphism and some additional syntactic sugar to support higher order
programming. We discuss these features next.

4.1 Polymorphism

To keep adtpp lightweight and unobtrusive, it does not access the C source
file, and must rely on C’s monomorphic type system for all its type checking.
Therefore, each instance of a polymorphic type that is used must be explicitly
declared in the ADT file, allowing adtpp to map it to a separate (monomor-
phic) C type. While this aspect of adtpp is not as elegant as typical declarative
languages, it can be helpful to name compound types anyway — using points
rather than 1ist (point) throughout the code can make the code more concise,
for example. In addition, if a polymorphic function is defined in the C code, it
must be declared in the ADT file (this is used to generate the appropriate C
function prototype) along with each instance used. Thus there are four kinds
of definitions/declarations supported in the ADT file. Polymorphic ADT defini-
tions have the same syntax as monomorphic definitions except that type names
have additional parameters enclosed in angle brackets (based on the template
syntax of C++). Polymorphic types and type parameters can be used in place
of types in the body of the definition.

Figure 5 shows several polymorphic ADT definitions that are analogous to
commonly used pre-defined types in Haskell and other declarative languages.
The last defines the type list of t as either the empty list, Nil, or Cons with
two arguments of type t and list of t, respectively. The analogous type in C is a
pointer to a struct containing a pointer to void and a “next” pointer to the same
type of struct. Polymorphic type definitions lead to the same functions/macros
as monomorphic definitions. These can be used to define generic functions (see
Figure 9 later, for example).

New polymorphic types are defined by “data” declarations and their instances
are defined by “type” declarations; Figure 6 shows several examples. Each in-
stance of each polymorphic type used in the program must be declared and given
a separate name using a type declaration. Adtpp generates a definition of a C
type of that name, as well as the associated macros/functions. This is needed
to ensure that, for example, a list of points is never used where a list of colors

data pair<tl, t2> { // simple product type, like a struct
Pair(tl, t2);

}

data either<tl, t2> { // simple sum type, *discriminated* union
Left(tl);
Right (t2);

}

data maybe<t> { // like a C pointer (possibly NULL)
Nothing();
Just(t);

}

data list<t> { // generic list, like a C pointer to a struct
Nil();
Cons(t, list<t>);

}

Fig. 5. Polymorphic ADT definitions in adtpp syntax

type points = list<point>;

type colors = list<color>;

type ints = list<adt_int>;

type polygon = pair<color, points>;

type polygons = list<polygon>;

type pairs<tl, t2> = list<pair<tl, t2>>;
type polygonsl = pairs<color, points>;

Fig. 6. Defining names for instances of polymorphic ADTs

is expected. Mapping these two polymorphic type instances to distinct C types
allows the C type checker to detect such errors. The type parameters used to
define such instances must be algebraic data types, or at least have the same size
as a pointer (currently this is not checked by adtpp). There are some predefined
types in adtpp, such as adt_int, which is an integer type of the correct size. The
names of data constructors for the new type are the same as for the polymorphic
type, but with an underscore and the new type name appended. For example,
the ints type has data constructors Nil_ints and Cons_ints. Internally, adtpp
generates the following data declararation:

data ints {
Nil_ints();
Cons_ints(adt_int, ints);

Note that code that uses monomorphic instances of polymorphic types must
explicitly use these monomorphic data constructor names both for constructing
and deconstructing. Therefore, while the structure of code to construct and
deconstruct values remains the same, the constructor names are more verbose,

10

as can be seen by comparing the coding of sumlist in Figure 7 with that of
concat in Figure 9.

// returns the sum of list of integers xs
int sumlist(ints xs) {
if_Cons_ints(xs, head, tail)
return head + sumlist(tail)
else()
return O;
end_if ()

Fig. 7. Deconstruction of a monomorphic instance of a polymorphic type

Type declarations can also define new polymorphic types in terms of types
defined elsewhere. For example, Figure 6 defines a polymorphic “list of pairs”
type, pairs, and an instance of this type, polygons1, which is equivalent to

type polygons.

function<t> int length(list<t>);
instance num_colors = length<color>;
instance num_polygons = length<polygon>;
instance num_points = length<point>;

function<t> list<t> concat(list<t>, list<t>);
instance join = concat<point>;

Fig. 8. Declaring polymorphic functions and their instances

Figure 8 shows declaration of polymorphic functions and instances of those
functions. It declares length to be a generic function with a single type pa-
rameter, t. It takes a list of any type t and returns an int. An instance of this
function, num_colors, is declared, which takes a list of colors. The header file
generated by adtpp includes a function prototype for the generic length function
and a definition of num_colors that calls length in a way that ensures safety.
The concat function takes two lists and returns a list, with the same type of
element for each of the lists, and join is an instance where the element type for
each list is point.

Figure 9 shows how polymorphic functions length and concat can be defined
using the macros/functions generated by adtpp for the generic types. To code
concat in regular C we would normally have a generic list of pointers to void.
To concatenate two lists of (pointers to) points we would cast both to lists of
pointer to void and cast the result of concat to a list of (pointers to) points.

11

// returns length of (generic) list xs; iterative coding
int length(list xs) {
int len = 0;

while (1) {
if_Cons(xs, head, tail)
len++;
xs = tail;
else()
return len;
end_if ()
}

}

// returns concatenation of (generic) lists xs and ys,
// result shares ys; coded in recursive pure functional style
list concat(list xs, list ys) {
if_Cons(xs, head, tail)
return Cons(head, concat(tail, ys));
else()
return ys;
end_if ()

Fig. 9. Defining polymorphic functions

All three casts can hide possible type errors that would not be caught by the C
compiler. Calling join has the same effect as calling concat with appropriate
casts, but adtpp ensures that any type errors can be picked up by the C compiler
and any casts are encapsulated in code generated by adtpp and are safe.

4.2 Multiple type parameters

In the previous section we avoided some details that can become important when
polymorphic types or functions have more than one type parameter. We discuss
them now.

// takes Pair(x,y) and returns Pair(y,x)
swap (pair xy) {
if _Pair(xy, x, y)
return Pair(y, x);
end_if ()

Fig. 10. Definition of swap the function for pairs

12

Consider the definition of the polymorphic swap function given in Figure 10.
It takes a value Pair(x,y) and returns Pair (y,x). Although the argument and
result are both generic pairs, they are different types — one is type pair<ti,t2>
and the other is type pair<t2,t1>. If a polygon was passed to swap, a different
type would be returned. Adtpp has a class of builtin generic types with no con-
structors that can be used as type variables. They are named adt_1, adt_2, etc.
For type pair, the arguments of the Pair data constructor (the types of x and y
in swap) are of type adt_1 and adt_2, respectively. To obtain the generic version
of each polymorphic type adtpp instantiates the type with adt_1, adt_2, etc.
This is equivalent to automatically supplying a type declaration defining this
instance. If the generic types occur as parameters but in a different order, an
explicit type declaration must be given.

type polygon_swp = pair<points, color>;
type pair_swp = pair<adt_2, adt_1>;

function<tl, t2> pair<t2, t1> swap(pair<tl, t2>);
instance swap_polygon = swap<points, color>;

Fig. 11. Declarations for the swap function

Figure 11 gives appropriate type, function and instance declarations for swap.
The generic types must be used to explicitly define pair_swp, the swapped ver-
sion of type pair. Adtpp processes the function declaration for swap to produce
a function prototype that takes a pair and returns a pair_swp. Its instance
swap_polygon takes a polygon and returns the swapped version, polygon_swp,
which must also be declared as an instance of pair.

4.3 Higher order functions

Adtpp can support any C type as an argument of a data constructor or poly-
morphic function if a suitable typedef is supplied. This includes “pointer to”
function types. However, typedef cannot be used to define polymorphic types,
so adtpp also has some direct support for higher order programming. For func-
tion (and other) declarations, arguments and results of functions can be declared
as function types that may contain type parameters. We use a slightly different
syntax to C: rather than “(*)” we use the keyword func. Thus a (“pointer
to” a) function that takes two ints and returns a double would be written
double func(int,int) in an ADT file rather than the C equivalent, double
(%) (int,int).

Figures 12 and 13 give appropriate declarations, definition and a use of a
version of the Haskell higher order polymorphic zipWith function. It takes two
lists, with elements of type t1 and t2, respectively, and produces a list with
elements of type t3. It uses a function that takes two arguments, of type t1 and

13

type pointss = list<points>;
type list_2 = list<adt_2>;
type list_3 = list<adt_3>;

function<t1,t2,t3>
list<t3> zipWith(t3 func(tl,t2), list<tl>, list<t2>);
instance mk_polygons = zipWith<color, points, polygon>;

Fig. 12. Declarations for zipWith

list_3 zipWith(adt_3 (*f)(adt_1, adt_2), list 11, list_2 12){
if_Cons (11, hdi, tl11)
if_Cons_list_2(12, hd2, t12)
return Cons_list_3((*f)(hd1,hd2), zipWith(f,t11,t12));

else()
return Nil_list_3Q);
end_if();
else()
return Nil_list_3();
end_if ()

polys = mk_polygons(&Pair_polygon, cols, ptss);

Fig. 13. Definition and use of zipWith

t2, respectively, and returns a value of type t3, and applies this function pair-
wise to the elements of the input lists. For example, given a list of colors and list
of lists of points, they can be combined to form pairs of elements that represent
polygons. It is necessary to declare two aditional generic list instances and an
instance for lists of lists of points. Furthermore, zipWith must be declared as a
polymorphic function (with a polymorphic function as an argument — this is
where the adtpp syntax for function types must be used). A function instance,
mk_polygons, must be declared for creating lists of polygons. The function that
creates a polygon (the argument of mk_polygons) is simply Pair_polygon, the
instance of the Pair data constructor generated when the polygon type was
declared as an instance of the pair type.

The code is somewhat more verbose and less elegant than the Haskell ver-
sion because all instances of polymorphic types and functions must be declared.
Furthermore, due to the multiple type parameters in zipWith, different versions
of generic lists and the associated macros must be used in the function defini-
tion. In Haskell it may well be worthwhile defining types such as points and
the function mk_polygons, but for adtpp we also need to use specialised generic
types (1ist_2 instead of 1list<t2>), data constructors (Nil_list_2 instead of
Nil) and matching primitives (if_Cons_list_2 instead of if_Cons). However,

14

the code has the same structure and safety properties. The structure ensures
that NULL pointers are never dereferenced and variables (hd1, t11, hd2 and
t12) are initialized before they are used. Types are respected because the actual
definitions of the C types are not used in the code and only a limited number of
abstract operations are supported. For the generic types such as adt_1, no “if”
or “case” macros are generated because there are no data constructors. Such
types can be passed around and put into and extracted from data structures
but not tested or modified by adtpp primitives. Of course if user code contains
explicit casts then no safety guarantees can be made. Similarly, explicitly freeing
memory is generally unsafe (unless the Boehm-Weiser conservative garbage col-
lector is used — by default it ignores calls to GC_FREE). Also, because ADTs are
represented as pointers (see Section 5) there is unfortunately nothing to prevent
pointer arithmetic being used on them.

Instances of types and data constructors are made explicit in the code by
using longer identifiers, but this seems a small price to pay for enabling the C
compiler to type check generic code. For example, type checking ensures there
is no inappropriate mixing of the seven distinct list instances: list, list_2,
list_3, polygons, colors, points and pointss. In contrast, analogous code
in regular C may not be structured in a safe way. It only has a single generic
type, void*, and (typically) a single generic list type. Explicit casts are used to
convert between distinct list instances, as the C compiler provides no direct help
in avoiding confusion between the different list instance types. For example, the
assignment to polys from Figure 13 would be written as follows:

polys = (polygons) zipWith(((voidx) (*) (void*,void#*)) &Pair,
(1ist) cols, (list) ptss);

If the last two arguments of the call were swapped there would be no compile
time error but a list of “swapped” polygons would be constructed, most likely
resulting in a runtime error at some later point in the computation. The adt
tool provides a built in polymorphic list type but there is no support for safe
conversion between different instances, so similar explicit casts must also be
used.

5 Implementation

The adtpp tool is implemented using a combination of flex and bison for
tokenising and parsing ADT files, and C code written using the adtpp tool itself.
An earlier prototype of adtpp written in a declarative language was used for
bootstrapping. A polymorphic list ADT is used, with several instances. One key
step in the implementation is to produce a list of monomorphic type declarations
where the right hand sides are type expressions that do not contain types defined
using type declarations (they may be defined with data declarations or they may
be built-in or assumed to be defined elsewhere in C code). For example, the type
declaration for polygons is expanded as follows:

15

type polygons = list<pair<color, list<point>>>;

This is a canonical form for type expressions and is used to map type expres-
sions to unique C type names. Type expressions can occur in instance declara-
tions and (instances of) data, type and function declarations. They are first ex-
panded to the canonical form then replaced by the corresponding monomorphic
type name. For example, in the polygons instance of 1ist<t>, the second argu-
ment of Cons is expanded to list<pair<color, list<point>>> then replaced
by polygons. If several monomorphic types are equivalent, such as polygon and
polygoni, the first name is chosen? and subsequent ones are processed to make
them the same as the first. We do not describe further details of how adtpp
works. Of more interest is the C code adtpp outputs. Here we discuss represen-
tation of ADT values then describe details of the macros and functions generated
in the header file.

5.1 Data representation

We first describe a straightforward way of representing ADTs in C, then discuss
how it is done in adtpp. The N arguments of a single data constructor can simply
be represented by a C struct with N fields. For a data type with M distinct data
constructors, the most straightforward representation in C is to use a union of M
structs (as above) plus a tag that encodes which data constructor the value has.
The tag can be in an outer struct, along with the union, thus we have a struct
containing a tag and union of structs. This is the representation used by the adt
tool® [5] (an alternative is to rely on field alignment constraints to add a tag
as the first field to each of the structs in the union, resulting in just a union of
structs). Figure 14 is a slightly simplified version of the adt tool representation
for the quad_roots ADT.

To assign to such a data type we must assign to the tag field of the outer
struct and each field of the inner struct that corresponds to the tag value (if
it is not Noroot). To extract the value we must test the tag field then extract
the corresponding inner struct, or individual fields of it. C provides no way of
ensuring consistency between tag values and which structs are read or written
— it is left to the programmer and hence error prone. For example, we can first
assign to the Oneroot struct and later read from the Tworoot struct (returning
garbage) because initially the tag was not set properly or later it was not tested
properly. A significant benefit of well-supported ADTs is that it is impossible
to make such errors. Another disadvantage of unions in C is that the size of a
union is (at least) the maximum size of all its elements. For the example above
it is very likely that three words will be used, whatever the number of roots.

For adtpp we use representations that are similar to those used in many
strongly typed declarative languages and are often more compact. Constants

2 Monomorphic types defined by data declarations and generic monomorphic types
such as 1list are given priority over those explicitly defined by type declarations.

3 The adt tool adds a flag field into every outer struct and, by default, other fields as
well. We ignore these in this paper.

16

typedef enum { Noroot=1, Oneroot=2, Tworoot=3 } quad_roots_tag ;
typedef struct quad_roots_struct {
quad_roots_tag tag ;
union {
struct {
double _root ;
} _Oneroot ;
struct {
double _rootl ;
double _root2 ;
} _Tworoot ;
} data ;
} quad_roots ;

Fig. 14. Representation of quad_roots type in adt tool (simplified)

(data constructors with no arguments) are represented as integers, starting with
zero, in a single word. Data types that only have constants are thus represented
like enumerated types in C. For non-constants with N arguments a pointer to a
dynamically allocated struct with N fields is used. Where regular C code would
use statically allocated space this may be less efficient, but for data structures
such as linked lists and trees, dynamic allocation is the norm so adtpp has no
additional overhead. For a data type that has both constants and non-constants,
the two are distinguished by comparing the value in the word with the number of
constants in the type. For types with a single constant it is equivalent to testing
for NULL in regular C. For simple linked lists and trees, the representation in
adtpp is identical to that in regular C and the code does the same runtime tests.
For types with several constants and at least one non-constant we rely on the
fact that addresses of dynamically allocated space are greater than or equal to
the number of constants in the type (if necessary, we can ensure this by simply
wasting some memory with low addresses).

Distinguishing between different non-constants requires a tag. If there are
a small number of non-constants, the least significant bits of the pointer are
sufficient to store this information. Modern architectures use byte-addressing
but dynamically allocated space is aligned to word boundaries so there are at
least two and generally three wasted bits that can be used for a tag. Thus we
can generally distinguish eight different non-constants without allocating extra
space. If there are more than eight non-constants, seven can be distinguished
using bits of the pointer and the remainder can have a “secondary” tag stored
with the arguments.

To create a value of such a data type, in the worst case we must malloc a
struct, assign to each of its fields, including the secondary tag, and add in the
primary tag. To extract a value we must compare the value with the maximum
constant of the type, extract the primary tag, dereference the pointer minus
the primary tag, extract the secondary tag and then the other arguments. For

17

most values of most data types, some of these steps are not needed and the
code adtpp produces only performs runtime tests and memory accesses that are
needed. For example, in the quad_roots ADT, Noroot is represented as a single
word containing zero and extracting it only requires a comparison with zero.
For Oneroot we simply have a pointer to a (struct containing one) double and
extracting it requires an additional test of the least significant bit of the pointer
and a dereference. For Tworoot we have a pointer, with 1 added in the least
significant bit, to a struct containing two doubles. We must subtract 1 as we
dereference the pointer (this typically has no runtime overhead). The Boehm-
Weiser conservative garbage collector ignores tags added to pointers (by default)
so automatic memory management is not affected.

The details of the C types we use are as follows. Each ADT is defined using
typedef as a pointer to a dummy struct, defined for that type, with no fields.
This is cast to an integer type when the value is a constant and for operations
on the tag. For each data constructor with N > 0 arguments we define a struct
with N fields, or N +1 fields if a secondary tag is used. We cast between pointers
to this struct and the ADT type where necessary. For example, the quad_roots
ADT results in the following types defined:

typedef struct _ADT_quad_roots {} *quad_roots;
struct _ADT_quad_roots_Oneroot {double f0;};
struct _ADT_quad_roots_Tworoot {double fO; double £1;7};

The representation used in adtpp could potentially be used by a regular C
programmer. However, it is dependent on the number of tag bits available and
requires numerous casts, various numeric and bit operations on these values that
are pointers et cetera. Having such low level, unreadable and error prone code
would normally be unacceptable. But when it is encapsulated in a tool such as
adtpp it can be maintained separately and the code that uses it is actually higher
level, more readable and less error prone than regular C code, while retaining
the efficiency advantages.

5.2 Macros and functions

One of the principles behind the design of adtpp is that compile-time error
checking should be maximized. One problem with the low level data representa-
tion is that casts must be used and this makes it more difficult to take advantage
of the type checking in C. We use a couple of techniques to ensure type check-
ing is possible even though casts are used. Because ADT definitions translate
to types that are pointers to dummy structs, type errors in C code that uses
ADTs most commonly result in error or warning messages such as “assignment
from incompatible pointer type”. Some C compilers, such as gcc, just give
a warning by default but stricter type checking can be enforced by appropriate
compiler flags. Although it may sometimes be helpful to provide more informa-
tion (such as the names of the ADTSs), letting the programmer know there is
some kind of type error at a specific source code location is generally enough

18

information to quickly identify the error. We also employ other techniques to
limit scope and catch various other errors at compile time. Some techniques
may potentially impose a small runtime overhead, but even minimal optimisa-
tion is sufficient to remove it. We do not give a full description of how all the
primitives are implemented but describe enough to cover all the techniques we
use.

The primitives for creating ADT values (one for each data constructor) are
implemented by static inline functions. Functions are used rather than macros
so the types of arguments and returned value can be checked by the C compiler
(and we can use “pointers to” these functions in higher order code such as our
zipWith example). The use of static functions means there is no problem with
name clashes when linking multiple object files, and the functions are all very
small and best inlined. The generated definition of Tworoot is given in Figure
15. The arguments are both declared as doubles and the result is quad_roots
so incompatible arguments and usage will be picked up by the C compiler type
checking. The macro ADT_MALLOC is used to allocate the appropriate struct, the
two fields are initialized, and the pointer with the tag value of one added is
returned (the pointer is cast to uintptr_t, an unsigned integer the same size
as a pointer, and later cast to quad_roots). There is also a static inline free
function for each ADT type that checks the tag and, for non-constants, calls
ADT_FREE on the value with the tag removed.

struct _ADT_quad_roots_Tworoot *v =
(struct _ADT_quad_roots_Tworoot*)
ADT_MALLOC(sizeof (struct _ADT_quad_roots_Tworoot)) ;
v->f0=vO0;
v->fl=vl;
return (quad_roots) (1+(uintptr_t)v);

static __inline quad_roots Tworoot(double vO, double v1){

Fig. 15. Definition of the Tworoot function

Each “if” primitive is defined as a macro, as is else() and end_if (). The
separate end_if () does not fit well with the style of C but is necessary due to the
way we limit scope of variables. These macros include braces to create new blocks
in which variables are declared. The braces are not properly balanced within
each macro. Incorrect use can unfortunately result in somewhat obscure error
messages, but fixing the code is generally straightforward. Without knowledge of
the macro definitions, the C source code can appear to be syntactically incorrect
(this is also the case for the adt tool). However, the macros are designed so that
additional semicolons do no harm. Thus “if_Noroot(v);” can be used in place
of “if _Noroot(v)” and a syntax directed editor will assume this is a function
call.

19

The “if” primitives check the tag corresponds to the appropriate data con-
structor and if so, declare and initialize the variable names used to represent the
arguments. The variable scope is limited to the new block created, so arguments
of a particular data constructor can only be accessed in code where it is known
the deconstructed variable has that data constructor as its value. The arguments
are declared with the appropriate types so type checking of arguments can be
done. To allow type checking of the deconstructed variable we assign it to a tem-
porary variable, _ADT_v, of the appropriate type. This also allows us to avoid
re-evaluating the first argument of the “if” (in case it is an expression rather
than a variable) and pass the value to any subsequent “else if”. However, the as-
signment can often be optimized away easily. The definitions of the if_Tworoot,
else_if_Noroot, else() and end_if () macros are given in Figure 16.

#define if_Tworoot(v, v0, vi) \
{quad_roots _ADT_v=(v); \
if ((uintptr_t) (LADT_v) >= 1 && \
((uintptr_t) (_ADT_v)&ADT_LOW_BITS)==1) { \
double vO=((struct _ADT_quad_roots_Tworoot*) \
((uintptr_t) _ADT_v-1))->f0; \
double vi=((struct _ADT_quad_roots_Tworoot*) \
((uintptr_t) _ADT_v-1))->f1;
#define else_if_Noroot() \
} else if (((uintptr_t) (_ADT_v))==0) {
#define else() } else {
#define end_if() }}

Fig. 16. Some if-then-else macros for the quad_roots type

The switch primitives are implemented in a similar way to “if”. A temporary
variable of the appropriate type is introduced to type-check the deconstructed
variable. The constant value or primary and secondary tags are extracted as
needed and mapped to the range 0...N — 1, where N is the number of data
constructors in the type. This is encapsulated in a macro generated for the
type and used as the target of a C switch statement. Each “case” has a label
corresponding to the data constructor number and initialized declarations for
each argument of the data constructor, in a new block to limit the scope. There
is also a dummy assignment to ensure the case matches the type of the switch
and the dummy variable is redefined so that a “case” can only occur immediately
inside a switch. The switch for quad_roots and case for Tworoot are given in
Figure 17.

Polymorphic types are implemented by generating multiple monomorphic in-
stances, as declared by the programmer in the ADT file. The generic types adt_1
et cetera are defined as pointers to dummy structs, like other ADTs. Instances
of polymorphic functions result in static inline functions with appropriate type
instances declared for arguments and the result. The definition simply calls the

20

#define switch_quad_roots(v) \
{quad_roots _quad_roots_tchk, _ADT_v=(v); \
switch(quad_roots_constructorNum((uintptr_t) (_ADT_v))){{{
#define case_Tworoot(v0, vi) \
break;}} case 2: \
{{quad_roots _SW_tchk=_quad_roots_tchk;} \
{char _quad_roots_tchk; \
double vO=((struct _ADT_quad_roots_Tworootx*) \
((uintptr_t)_ADT_v-1))->f0; \
double vi=((struct _ADT_quad_roots_Tworoot*) \
((uintptr_t) _ADT_v-1))->f1;
#define default() break;}} default: {{
#define end_switch() }}}}

Fig. 17. Some switch macros for the quad_roots type

generic function, with arguments cast to the appropriate generic types and the
result cast to the type instance. This consistent casting between generic types
and other types is safe due to the type checking performed for the generic code.
For example, mk_polygons is defined as follows:

static __inline polygons
mk_polygons(polygon (*vO) (color, points), colors vl, pointss v2){
return (polygons) zipWith((adt_3 (*)(adt_1, adt_2)) voO,

(list) vi, (1ist_2) v2);

Where multiple types are equivalent, the later types and all associated macros
etc. are defined in terms of the first type. Generating different structs for equiv-
alent types would result in spurious type errors, even if the structs had identical
fields. For example, the polygonsl definition results in the following macros
being output (among others):

#define polygonsl polygons
#define free_polygons1(v) free_polygons(v)
#define if_Cons_polygonsl(v0O, v1, v2) if_Cons_polygons(vO, vl1, v2)

6 Performance

The tagged pointer representation we use can have a significant space efficiency
advantages compared with using structs and unions with a tag field. For exam-
ple, consider the tree definition given ealier. Figure 18 gives the numbers of
bytes allocated per node in various cases. For all benchmarks we use gcc version
4.8.2-19ubuntul under Ubuntu on Intel x86_64 hardware (pointers and long
integers are both 8 bytes). We give the size in bytes of the structs used to repre-
sent internal nodes and empty subtrees, and the (approximate) number of bytes

21

per key overall (which is the sum of the two, since a binary tree with N keys has
N internal nodes has N + 1 empty subtrees; we assume no sharing of subtrees).
We also give the memory used by the standard library version of malloc for
these structs and the overall tree. Tags and constants are not optimised in adt
and the total space used for such a tree is around three times as much as for
adtpp. A regular C version would typically represent empty trees using NULL
and non-empty trees using a struct containing a long integer and two pointers,
with the same space requirements as adtpp.

struct size malloc size
Node|Empty|per key|Node|Empty|per key
adt 32 32 64| 48 48 96
Regular C| 24 0 24 32 0 32
adtpp 24 0 24| 32 0 32

Fig. 18. Binary tree data sizes (bytes)

Regular C can be cumbersome with more complex data types, and most
C programmers would not optimize representation in the way adtpp does. For
example, 234-trees [8] have several different kinds of nodes that need to be dis-
tinguished in some way, and regular C code is greatly simplified if a struct that
can represent a 4-node is used uniformly (a struct containing three data values,
four pointers and a tag to indicate the kind of node), with some space wasted for
other nodes. With algebraic data types we can use different data constructors for
the different node types, and adtpp will use a more compact representation as
well as avoiding certain clases of errors. Space can be reduced further (at the cost
of somewhat more complex code) by using different data constructors for leaves
(which are the majority of nodes), since these nodes don’t have subtrees. For
example, Figure 19 shows a possible ADT definition for such a “leaf-optimized”
234-tree containing integer keys.

The adt tool would yield a representation with the same size as the regular
C implementation outlined above, due to the use of a union. Red-Black trees
[9] are isomorphic to 234-trees but have a much simpler representation in C (a
single kind of node which is the same as a binary tree node but the “color”,
either red or black, must also be stored), at the cost of conceptually more com-
plex code. Figure 20 shows the percentage of different kinds of nodes with one
million random insertions, the space taken for the structs using the different
representations and the space taken per key, assuming this node distribution.
We assume that for red-black trees the node color can be represented with no
additional space. The adtpp representation only uses around 13 bytes per key
compared with around 40 bytes for the unoptimized representation and 24 bytes
for simple (unbalanced) binary search trees. Using around 0.57 pointers per key,
this is a very compact data structure for supporting O(log N) search and up-
date. In the worst case, where there are only 2-nodes, the adtpp representation

22

only uses 16 bytes (an overhead of one pointer) per key and the other 234-tree
representations use 64; red-black trees always have the same overhead.

data t234 {
Empty234() ;
Two (t234, long, t234);
Three(t234, long, t234, long, t234);
Four(t234, long, t234, long, t234, long, t234);
TwoL (long) ;
ThreeL(long, long);
FourL(long, long, long);

Fig.19. ADT definition for leaf optimized 234-tree

Two|Three|Four |TwoL|ThreeL|FourL|per key
% of nodes 22 15 3 20 25 15
adt struct size 64 64| 64| 64 64 64 40
Regular C struct size 64 64| 64| 64 64 64 40
Red-Black tree struct sizes| 24 48| 72| 24 48 72 24
adtpp struct size 24 40| 56 8 16 24 13

Fig. 20. Leaf optimized 234-tree structure and data sizes (bytes)

Following [5], we have performed timing experiments for various programs
that sum the elements of a binary tree that has a long integer in each internal
node as well as in each leaf node. We use two regular C versions, both using
a struct with a long and two pointers to represent each node. For leaves both
pointers are NULL and for internal nodes neither pointer is NULL. One version
stops the recursion when the argument is NULL (the same code can be used to
sum the elements in a tree that doesn’t distinguish leaf nodes) and the other
stops recursion when the left pointer of the argument is NULL (the argument
itself is assumed to be not NULL). Two of the faster and elegant codings using
the adt tool are used: one using an if-then-else construct and the other using
a switch construct (Figure 23 has code in the same style). These are compiled
both in the default way and using the “_FAST_” flag, which omits some runtime
safety checks (in [5] it is suggested this flag should be used when the code is fully
debugged). The code for the C and adt versions is in [5]. We also use two adtpp
versions — see Figure 21. As in [5] we use a balanced tree where the branches
are shared at each level, resulting in space usage proportional to the depth, even
though there are (conceptually) an exponential number of nodes.

23

// data ltree {

// Leaf (long) ;
// Branch(long, ltree, ltree);
// 3}

long sum_adtpp_if (ltree cur) {
if_Leaf (cur, val)
return val;
else_if_Branch(val, left, right)
return val + sum_adtpp_if(left) + sum_adtpp_if(right);
end_if ()
}

long sum_adtpp_sw(ltree cur) {
switch_ltree(cur)
case_Leaf (val)
return val;
case_Branch(val, left, right)
return val + sum_adtpp_sw(left) + sum_adtpp_sw(right);
end_switch()

Fig. 21. Adtpp code for timing experiments

Optimization none| -01|-02|-03
C, NULL base case 8.8| 5.4|/4.114.3
C, left==NULL base case| 4.9| 3.3| 2.2| 2.7
adt, if 18.2{16.0| 9.3| 3.2
adt, switch 10.4| 8.4|/4.4|2.4
adt _FAST_, if 4.8| 3.6| 2.6 2.8
adt _FAST_, switch 5.9| 4.3 2.3| 2.0
adtpp, if 7.6| 4.0/ 2.8/ 3.0
adtpp, switch 7.6| 4.6/ 2.2| 2.0

Fig. 22. Times for summing elements of a tree (seconds)

Figure 22 gives the times in seconds for a tree with depth 28 (around 27
million nodes). The extra safety afforded by adtpp has an apparent cost for the
if-then-else code, which tests the tag twice for internal nodes — it is slightly
slower than the adt version that omits tag checks. However, the cost is quite
small (much less than the cost in the adt tool for all but the most agressive
optimization level) and the switch version is equal fastest (along with the adt
version with checks omitted). Furthermore, the data structure used by adtpp is
the most compact: without sharing subtrees and ignoring malloc overheads it
uses 16 bytes per key compared to 24 for regular C and 32 for the adt style of
representation.

24

7 Related work

We cannot hope to include even a superficial discussion of all programming
languages that are related to our extension of C. Instead, we discuss the most
closely related work on extending languages to include algebraic data types, and
also comment on how our treatment of polymorphism is related to polymorphism
in other languages. There are language extensions such as jADT#, which extends
Java, but our work is closely tied to the features of C, such as the low level
representation details and use of macros. The Extended Objective-C library®
includes support for ADTs. It uses macros to implement the extension (rather
than a separate preprocessor) and uses the struct containing a union of structs
representation, but no polymorphism.

The most closely related work is clearly the adt tool [5], which we have
discussed some aspects of already, such as the data representation. It provides
some support for polymorphism, with a small number of built-in polymorphic
types, and it is (reportedly) relatively easy to modify the tool to support new
polymorphic types. There is no automatic safe casting as provided in adtpp.
However, the adt tool provides a greater selection of macros, particularly for
pattern matching and deconstruction. Adtpp supports equivalents of what are
considered in [5] to be the most elegant and efficient pattern matching primitives,
and provides more error checking. For example, Figure 23 shows the “best”
version of sum_tree (Figure 4) supported by the adt tool. The adt code is lower
level than our adtpp version due to the explicit pointer types and extraction of
a tag from t to determine the data constructor. It is also more error prone than
adtpp code. The variables val, t1 and tr have explicit declarations (which can
be wrong) and the variables can be used before they are assigned to (for example,
in the Empty case). Furthermore, the target of the switch may be unrelated to
the different cases. For example, a case for the empty list (Nil) could be used
instead of Empty; this would result in a compile-time error in adtpp but not in
the adt tool. We consider our adtpp version to be more elegant. It definitely
has fewer opportunities for errors and, as discussed in Section 5, is also more
efficient.

The polymorphic types supported by adtpp are closely related to the types
of various declarative languages such as ML [2], Haskell [3] and Mercury [4]. The
compilers of these languages infer types for each instance of a function, data
constructor and variable. For example, the Cons data constructor takes a value
of type t and a value of type list of ¢ and returns a value of type list of ¢. Each
occurrence of Cons in the program may have a different instance of ¢, and this is
determined by the type checking/inference pass of the compiler. Because adtpp
simply relies on the C compiler, which has a much simpler type checking algo-
rithm, we rely on the programmer to explicitly give different versions of Cons for
different occurrences. Similarly, there must be different versions of polymorphic

4 http://jamesiry.github.io/jADT/index.html
® https://github.com/jspahrsummers/libextobjc

25

long sum_adt(tree *t) {
long val;
tree *tl, *tr;
switch(gttreetag(t)) {
csEmpty (t)
return O;
csNode(t, val, tl, tr)
return val + sum_adt(tl) + sum_adt(tr);

}

Fig. 23. Summing tree elements using the best method in the adt tool

functions. This means instances must be declared and named, and makes the
code somewhat more verbose, but no less flexible.

A little flexibility is lost because types of variable occurrences must also be
fixed, rather than inferred by the compiler. In pure functional code, a variable
xs may have type list of ¢, and different occurrences of the variable can have
different instances of the type. However, this is can be unsafe in the presence of
destructive update. ML allows some destructive update and imposes the “value
restriction” [10], which rules out using polymorphic types for variables that can
potentially be updated. In adtpp there are no restrictions on destructive update
so it seems inevitable that variables with polymorphic types cannot be supported
while maintaining type safety.

8 Further work

There are many ways in which adtpp could be enhanced and extended. Here
we briefly mention a few. The variety of macros/functions produced could be
extended in various ways. For example, a version of free that traverses and
frees an entire data structure, and perhaps other traversal functions could be
provided, as in the adt tool. Macros that combine deconstruction with a while
loop could be useful, particularly for data types that have recursive cases in just
one data constructor (such as lists and trees). Adtpp could support an analogue
of Haskell’s newtype declarations, which are like data declarations but there
must be just one data constructor with one argument. This allows two distinct
isomorphic types and the implementation can be optimised to avoid the extra
indirection. For example, the type userid below would be distinct from adt_int,
so the two would not be accidentally confused, but the representation could be
a struct containing an adt_int rather than a pointer to such a struct.

newtype userid {
Userid(adt_int);
}

26

This idea of avoiding pointers could be extended to other data types that are
no larger than a pointer. Unfortunately, the macro processor cpp cannot evaluate
‘sizeof’ expressions, but potentially a two-pass approach could be used, where
adtpp outputs C code, which is then compiled and run to produce a header
file. Safety could be enhanced further by avoiding defining ADTs as pointer
types (so pointer arithmetic cannot be performed). Pseudo-random names could
also be used for struct type and member names, to make it more difficult for
programmers to circumvent adtpp’s type safety.

Pattern matching and constructing monomorphic instances of polymorphic
types could be made less verbose by allowing the user to declare the specialised
constructor names for each monomorphic instance.

9 Conclusion

The support for algebraic data types in various declarative languages has many
advantages. The data types are very expressive, allowing precise descriptions of
valid values. The programming constructs for constructing and testing plus de-
constructing values lead to naturally safe code. Parametric polymorphism allows
significant code reuse and abstraction. Adtpp is a software tool that gives very
similar support for ADTs in C by processing a file containing ADT definitions
and other declarations and producing a “.h” C header file. Compared with pro-
gramming in regular C, many potential errors can be detected at compile time.
Data is represented in ways similar to declarative language implementations. In
many simple cases the representation is identical to that in regular C and for
more complex types it is often more compact. Adtpp produces macros and inline
functions with only a small overhead that can generally be eliminated by an
optimising compiler. Support for polymorphism is limited by the reliance on the
standard C compiler for type checking — some of the work done by compilers
for declarative languages must be done by the programmer instead. Each type
instance of polymorphic functions and data constructors much be declared and
named separately in the source code rather than this information being inferred
by the compiler. Other than this, the code can have identical structure and safety
properties to code in declarative languages. The system is open-source and avail-
able from https://bitbucket.org/Macnaa/adt4c-with-polymorphism.git.

References

1. Burstall, R.M., MacQueen, D.B., Sannella, D.: HOPE: an experimental applicative
language. In: LFP ’80: Proceedings of the 1980 ACM Conference on LISP and
Functional Programming, New York, NY, USA, ACM (1980) 136-143

2. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge, MA, USA (1997)

3. Jones, S.P., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel,
J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J.,

10.

27

Meijer, E., Peterson, J., Reid, A., Runciman, C., Wadler, P.: Report on the pro-
gramming language Haskell 98, a non-strict purely functional language, February
1999. (1999)

Somogyi, Z., Henderson, F., Conway, T.C.: The execution algorithm of Mercury,
an efficient purely declarative logic programming language. J. Log. Program. 29
(1996) 17-64

Hartel, P.H., Muller, H.L.: Simple algebraic data types for C. Softw., Pract. Exper.
42 (2012) 191-210

Naish, L.: Sharing analysis in the Pawns compiler. PeerJ Computer Science 1
(2015)

. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment.

Softw. Pract. Exper. 18 (1988) 807-820

. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms.

Acta Informatica 1 (1972) 290-306

. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In:

Proceedings of the 19th Annual Symposium on Foundations of Computer Science.
SFCS ’78, Washington, DC, USA, IEEE Computer Society (1978) 8-21
Wright, A.: Simple imperative polymorphism. 8 (1995) 343-356

