
Declarative Diagnosis of Floundering

Lee Naish

Computing and Information Systems

University of Melbourne

Slides, paper and code are on the web:

http://www.cs.mu.oz.au/˜lee/papers/ddf/

1

Outline

Background

Motivation

Diagnosis method

Example diagnoses

Theory

Conclusion

2

Background

As well as the normal left to right execution, many Prolog systems

support coroutining

A call can delay if it is insufficiently instantiated, and be resumed

later, after some variables have been bound

But sometimes this never happens — the call is never resumed and

the computation flounders

Similarly, concurrent logic programs can deadlock and constraint

logic programs may never invoke (efficient) constraint solvers

3

Background (cont.)

Kowalski: Algorithm = Logic + Control

Instead of making the logic more complex, we can make the control

more complex

Reasoning about correctness of successful derivations is made easier

Thats great if we never write buggy programs, or if bugs are never

related to control

Floundering is a symptom of control-related bugs and the standard

reasoning methods, based on declarative semantics, don’t apply

The procedural semantics can be very complex

Maybe its not such a good trade-off after all?

4

Example SWI-Prolog Program

% perm(As0, As): As = permutation of list As0

% As0 or As should be input

perm([], []).

perm([A0|As0], [A|As]) :-

when((nonvar(As1) ; nonvar(As)),

inserted(A0, As1, [A|As])),

when((nonvar(As0) ; nonvar(As1)),

perm(As0, As1)).

% inserted(A, As0, As): As = list As0 with A inserted

% As0 or As should be input

inserted(A, As0, [A|As0]).

inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(As)),

inserted(A, As0, As)).

5

Example Program (cont.)

The program uses the “when meta-call” for delaying

Eg, the call inserted(A0, As1, [A|As]) call delays until As1 or

As are instantiated

?- perm([1,2,3],A).

Call: perm([1,2,3],_G0)

Call: when(...,inserted(1,_G1,[_G2|_G3])) (delays)

Exit: when(...,inserted(1,_G1,[_G2|_G3]))

Call: when(...,perm([2,3],_G1))

Call: perm([2,3],_G1)

Call: inserted(1,[_G4|_G5],[_G2|_G3]) (resumes)

Exit: inserted(1,[_G4|_G5],[1,_G4|_G5])

Call: when(...,inserted(2,_G6,[_G4|_G5]))

...

6

Three buggy versions

% Bug 1: wrong variable AS0 in recursive call

inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(As)),

inserted(A, AS0, As)). % XXX

% Bug 2: wrong variable A in when/2

inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(A)), % XXX

inserted(A, As0, As)).

% "Bug" 3: assumes As0 is input YYY

% (perm/2 intended modes are incompatible)

inserted(A, [A1|As0], [A1|As]) :-

when(nonvar(As0), % YYY

inserted(A, As0, As)).

7

Bug Symptoms

Bug 1: perm([1,2,3],A) succeeds with A=[1,2,3], then four

satisfiable (but not valid) answers, eg A=[1,2,3|_], and four

floundered answers, eg A=[1,3,_|_]

Bug 1: perm(A,[1,2,3]) succeeds with A=[1,2,3], then three

floundered answers, eg A=[1,3,_|_]

Bug 1: perm([A,1|B],[2,3]) has floundered answer A=3

Bug 2: perm([X,Y,Z],A) behaves correctly but perm([1,2,3],A)

succeeds with A=[1,2,3] and A=[1,3,2], then loops

Bugs 2 and 3: perm(A,[1,2,3]) succeeds with A=[1,2,3] then has

three floundered answers, A=[1,2,_|_], A=[1,_|_] and A=[_|_],

then fails

8

Declarative diagnosis of floundering

We can to avoid thinking about coroutining, backtracking and

debugging strategy!

We use the three-valued declarative debugging scheme

The scheme represents a computation as a tree

Each node is correct, erroneous or inadmissible (as determined by

the programmer)

A node is buggy if it is erroneous but has no erroneous children

The simplest search strategy is top-down

First, check the root is erroneous

Recursively search for buggy nodes in children; if found return them

Otherwise return the root as the bug (along with children, noting

any inadmissible ones)

9

Partial Proof Trees

A proof tree corresponds to a successful derivation

Each node is at atom which was proved

The children are the subgoals of the body of the clause instance

used

Leaves are atoms matched with facts

A partial proof tree corresponds to a successful or floundered

derivation

Leaves can also be calls which delayed but were never resumed

10

A Partial Proof Tree for Bug 1

(f) perm([3,1| G1],[2,3]) e

(s) inserted(3,[2| G5],[2,3]) e

(s) inserted(3,[],[3]) c (f) perm([1| G1],[2| G5]) i

(f) inserted(1, G6,[2| G5]) i (f) perm(G1, G6) i

(f) = floundered, (s) = succeeeded

e = erroneous, c = correct, i = inadmissible

11

The programmer’s intentions

Diagnosis of wrong answers can be based in truth of ground atoms

Atoms in the proof tree are correct if they are valid

Inadmissibility can be used for ill-typed atoms, eg

inserted(1,a,[1|a])

For floundering we consider truth of non-ground atoms

The set of admissible (valid or erroneous) atoms is closed under

instantiation (as is the set of valid atoms)

Successful partial proof tree nodes are correct (valid), erroneous or

inadmissible, depending on the atom

Floundered partial proof tree nodes are erroneous if they are

properly instantiated and inadmissible otherwise

12

Our intentions for perm/2

perm(As0,As) is admissible iff As0 or As are (nil-terminated) lists

and valid if As is a permutation of As0

eg: perm([X],[X]), perm([X],[2|Y]), perm([1|X],[2|Y])

For Bug 3 inserted(A,As0,As) is admissible iff As0 is a list

For Bugs 1 and 2 its admissible iff As0 or As are lists

13

Diagnosis example: Bug 1

?- wrong(perm([A,1|B],[2,3])).

(floundered) perm([3,1|A],[2,3])...? e

(floundered) perm([1|A],[2|B])...? i

(succeeded) inserted(3,[2|A],[2,3])...? e

(succeeded) inserted(3,[],[3])...? v

BUG - incorrect clause instance:

inserted(3,[2|A],[2,3]) :-

when((nonvar(A);nonvar([3])),

inserted(3,[],[3])).

14

Diagnosis example: Bug 1

...

(floundered) perm([1,2,3],[1,3,A|B])...? e

(floundered) perm([2,3],[3,A|B])...? e

(floundered) inserted(2,[3],[3,A|B])...? e

(floundered) inserted(2,[A|B],[A|C])...? i

BUG - incorrect modes in clause instance:

inserted(2,[3],[3,A|B]) :-

when((nonvar([]);nonvar([A|B]))

inserted(2,[A|_],[A|B])).

15

Diagnosis example: Bug 2

?- wrong(perm(A,[1,2,3])).

(succeeded) perm([1,2,3],[1,2,3])...? v

(floundered) perm([1,2,A,B|C],[1,2,3])...? e

(floundered) perm([2,A,B|C],[2,3])...? e

(floundered) perm([A,B|C],[3])...? e

(floundered) inserted(A,[3|B],[3]) ...? e

(floundered) inserted(A,B,[])...? e

BUG - incorrect delay annotation:

when((nonvar(A);nonvar(B)),inserted(B,A,[]))

16

Diagnosis example: Bug 3

?- wrong(perm(A,[1,2,3])).

(succeeded) perm([1,2,3],[1,2,3])...? v

(floundered) perm([1,2,A,B|C],[1,2,3])...? e

(floundered) perm([2,A,B|C],[2,3])...? e

(floundered) perm([A,B|C],[3])...? e

(floundered) inserted(A,[3|B],[3])...? i

(floundered) perm([A|B],[3|C])...? i

BUG - incorrect modes in clause instance:

perm([A,C|D],[3]) :-

when((nonvar([3|B]);nonvar([])),

inserted(A,[3|B],[3])),

when((nonvar([C|D]);nonvar([3|B])),

perm([C|D],[3|B])).

17

Theory

Soundness and completeness of diagnosis are straightforward

Floundering is only caused by incorrect delay annotations,

confusion over intended modes, and logical errors

There is a floundered derivation iff there is a successful derivation

using a transformed version of the program

Would-be floundered calls bind the insufficiently instantiated

variables to special terms which don’t occur elsewhere, eg $

when((nonvar(As0) ; nonvar(As)), inserted(A, As0, As)) is

transformed into (As0 = $, As = $; inserted(A, As0, As))

Our diagnosis algorithm is like three-valued wrong answer diagnosis

using the transformed program

18

Conclusion

For floundering, Logic + Control = Logic′

Declarative diagnosis techniques can be applied quite easily

The complex details of calls delaying, interleaved execution,

backtracking etc can be ignored

19

