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t. Many logi
 programming languages have delay primitiveswhi
h allow 
oroutining. This introdu
es a 
lass of bug symptoms |
omputations 
an 
ounder when they are intended to su

eed or �nitelyfail. For 
on
urrent logi
 programs this is normally 
alled deadlo
k. Sim-ilarly, 
onstraint logi
 programs 
an fail to invoke 
ertain 
onstraintsolvers be
ause variables are insuÆ
iently instantiated or 
onstrained.Diagnosing su
h faults has re
eived relatively little attention to date.Sin
e delay primitives a�e
t the pro
edural but not the de
larative viewof programs, it may be expe
ted that debugging would have to 
onsiderthe often 
omplex details of interleaved exe
ution. However, re
ent workon semanti
s has suggested an alternative approa
h. In this paper weshow how the de
larative debugging paradigm 
an be used to diagnoseunexpe
ted 
oundering, insulating the user from the 
omplexities of theexe
ution.Keywords: logi
 programming, 
oroutining, delay, debugging, 
ounder-ing, deadlo
k, 
onstraints1 Introdu
tionThe �rst Prolog systems used a stri
t left to right evaluation strategy, or 
om-putation rule. However, sin
e the �rst few years of logi
 programming therehave been systems whi
h support 
oroutining between di�erent sub-goals [1℄.Although the default order is normally left to right, individual 
alls 
an delayif 
ertain arguments are insuÆ
iently instantiated, and later resume, after otherparts of the 
omputation have further instantiated them. Su
h fa
ilities are nowwidely supported in Prolog systems. They also gave rise to the 
lass of 
on
urrentlogi
 programming languages, su
h as Parlog [2℄, where the default evaluationstrategy is parallel exe
ution and similar delay me
hanisms are used for syn
hro-nisation and prevention of unwanted nondeterminism. Delay me
hanisms havealso been in
uential for the development of 
onstraint logi
 programming [3℄.Delays are often used when 
onstraints are \too hard" to be handled by eÆ
ient
onstraint solvers, for example, non-linear 
onstraints over real numbers.Of 
ourse, more features means more 
lasses of bugs. In theory delays don'ta�e
t soundness of Prolog (see [4℄1) | they 
an be seen as a�e
ting the \
on-trol" of the program without a�e
ting the logi
 [5℄. However, they do introdu
e1 In pra
ti
e, 
oundering within negation 
an 
ause unsoundness.



2a new 
lass of bug symptoms. A 
all 
an delay and never be resumed (be
auseit is never suÆ
iently instantiated); the 
omputation is said to 
ounder. MostProlog systems with delays still print variable bindings for 
oundered deriva-tions in the same way as su

essful derivations (in this paper we refer to theseas \
oundered answers"), and may also print some indi
ation that the 
omputa-tion 
oundered. Floundered answers are not ne
essarily valid, or even satis�able,a

ording to the de
larative reading of the program. They provide little usefulinformation and generally indi
ate the presen
e of a bug. In 
on
urrent logi
programs the equivalent of 
oundering is normally 
alled deadlo
k | the 
om-putation terminates with no \pro
ess" (
all) suÆ
iently instantiated to pro
eed.In 
onstraint logi
 programming systems, the analogue is a 
omputation whi
hterminates with some insuÆ
iently instantiated 
onstraints not solved (or even
he
ked for satis�ability). Alternatively, if some 
onstraints are insuÆ
iently in-stantiated they may end up being solved by less eÆ
ient means than expe
ted,su
h as exhaustive sear
h over all possible instan
es.There is a 
lear need for tools and te
hniques to help diagnose 
ounderingin Prolog (and analogous bug symptoms in other logi
 programming languages),yet there has been very little resear
h in this area to date. There has beensome work on showing 
oundering is impossible using synta
ti
 restri
tions ongoals and programs (parti
ularly logi
 databases), or stati
 analysis methods(for example, [6℄[7℄). However, this is a far 
ry from general purpose methods fordiagnosing 
oundering. In this paper we present su
h a method. Furthermore,it is a surprisingly attra
tive method, being based on the de
larative debuggingparadigm [8℄ whi
h is able to hide many of the pro
edural details of a 
ompu-tation. The paper is stru
tured as follows. We �rst give some examples of howvarious 
lasses of bugs 
an lead to 
oundering. We then present our methodof diagnosing 
oundering, give examples, and dis
uss how our simple prototype
ould be improved. Next we brie
y 
onsider some more theoreti
al aspe
ts, then
on
lude. Basi
 familiarity of Prolog with delays and de
larative debugging isassumed.2 ExampleFigure 1 gives a permutation program whi
h has simple logi
 but is made re-versible by use of delaying primitives and 
areful ordering of sub-goals in perm/2(see [9℄ for further dis
ussion). The delay primitive used is the \when meta-
all":a 
all when(Cond,A) delays until 
ondition Cond is satis�ed, then 
alls A. For ex-ample, the re
ursive 
all to perm/2 will delay until at least one of its argumentsare non-variables. Generally there are other features supported, su
h as delay-ing until a variable is ground; we don't dis
uss them here, though our methodand prototype support them. A great number of delay primitives have been pro-posed. Some, like the when meta-
all, are based on 
alls. Others are based onpro
edures (a�e
ting all 
alls to the pro
edure), whi
h is often more 
onvenientand tends to 
lutter the sour
e 
ode less. Our general approa
h to diagnosis isnot e�e
ted by the style of delay primitive. The when meta-
all is by far the



3% perm(As0, As): As = permutation of list As0% As0 or As should be inputperm([℄, [℄).perm([A0|As0℄, [A|As℄) :-when((nonvar(As1) ; nonvar(As)),inserted(A0, As1, [A|As℄)),when((nonvar(As0) ; nonvar(As1)),perm(As0, As1)).% inserted(A, As0, As): As = list As0 with element A inserted%......% As0 should be input %... Bug 2% As0 or As should be inputinserted(A, As0, [A|As0℄).inserted(A, [A1|As0℄, [A1|As℄) :-%...when(nonvar(As0), %... Bug 2%...when((nonvar(As0) ; nonvar(A)), %... Bug 1when((nonvar(As0) ; nonvar(As)),%.......inserted(A, AS0, As)). %... Bug 3inserted(A, As0, As)).Fig. 1. A reversible permutation programmost portable of the more 
exible delay primitives, whi
h is our main reason for
hoosing it. We have developed the 
ode in this paper using SWI-Prolog.We 
onsider three separate possible bugs whi
h 
ould have been introdu
ed,shown as 
ommented-out lines pre
eding the 
orre
t versions. They exemplifythree 
lasses of errors whi
h 
an lead to 
oundering: in
orre
t delay annota-tions, 
onfusion over the modes of predi
ates, and logi
al errors. With the �rstbug, an in
orre
t delay annotation on the re
ursive 
all to inserted/3, severalbug symptoms are exhibited. The 
all perm([X,Y,Z℄,A) behaves 
orre
tly butperm([1,2,3℄,A) su

eeds with the answers A=[1,2,3℄ and A=[1,3,2℄, thenloops inde�nitely. We don't 
onsider diagnosis of loops in this paper, thoughthey are an important symptom of in
orre
t 
ontrol. The 
all perm(A,[1,2,3℄)su

eeds with the answer A=[1,2,3℄ then has three further 
oundered answers,A=[1,2,_,_|_℄, A=[1,_,_|_℄ and A=[_,_|_℄, before terminating with failure.The se
ond bug is a more subtle 
ontrol error. When inserted/3 was 
odedwe assume the intention was the se
ond argument should always be input andthe delay annotation is 
orre
t with respe
t to this intention. However, somemodes of perm/2 require inserted/3 to work with just the third argumentinput. When 
oding perm/2 the programmer was either unaware of this or was
onfused about what modes inserted/3 supported. Although this version ofthe program behaves identi
ally to Bug 1 for the goal perm(A,[1,2,3℄), thebug diagnosis will be di�erent be
ause the programmer intentions are di�erent.The mistake was made in the 
oding of perm/2, and this is re
e
ted in thediagnosis. The simplest way to �x the bug is 
hange the intentions and 
ode forinserted/3, but we only deal with diagnosis in this paper.



4 The third bug is a logi
al error in the re
ursive 
all to inserted/3. Due to anin
orre
t variable name, other variables remain uninstantiated and this 
an ulti-mately result in 
oundering. The 
all perm([1,2,3℄,A) �rst su

eeds with an-swer A=[1,2,3℄. There are four other su

essful answers whi
h are satis�able butnot valid, for example, A=[1,2,3|_℄ and A=[3,1|_℄. These 
ould be diagnosedby existing wrong answer de
larative debugging algorithms, though some earlyapproa
hes assumed bug symptoms were unsatis�able atoms (see [10℄). Theseanswers are interleaved with four 
oundered answers, su
h as A=[1,3,_|_℄,whi
h are also satis�able but not valid. The 
all perm(A,[1,2,3℄) su

eedswith the answer A=[1,2,3℄ then has three 
oundered answers, also in
ludingA=[1,3,_|_℄. The 
all perm([A,1|B℄,[2,3℄) should �nitely fail but returns asingle 
oundered answer with A=3.Be
ause delays are the basi
 
ause of 
oundering and they are inherentlypro
edural, it is natural to assume that diagnosing unexpe
ted 
oundering re-quires a pro
edural view of the exe
ution. Even with su
h a simple program andgoals, diagnosis using just tra
es of 
oundered exe
utions 
an be extremely dif-�
ult. Sub
omputations may delay and be resumed multiple times as variablesin
rementally be
ome further instantiated. Re
onstru
ting how a single sub
om-putation pro
eeds 
an be very diÆ
ult, espe
ially if there is also ba
ktra
kinginvolved. Although some tools have been developed, su
h as printing the historyof instantiation states for a variable, diagnosis of 
oundering has remained very
hallenging.3 De
larative diagnosis of 
ounderingTo diagnose unexpe
ted 
oundering in pure Prolog programs with delays we usean instan
e of the three-valued de
larative debugging s
heme des
ribed in [11℄.We des
ribe the instan
e pre
isely in the following se
tions, but �rst introdu
ethe general s
heme. A 
omputation is represented as a tree, with ea
h nodeasso
iated with a se
tion of sour
e 
ode (a 
lause in this instan
e) and subtreesrepresenting sub
omputations. The trees we use here are a generalisation of prooftrees. Ea
h node has a truth value whi
h expresses how the sub
omputation
ompares with the intentions of the programmer. Normally the truth values ofonly some nodes are required and are found by asking the user questions. Threetruth values are used: 
orre
t, erroneous, and inadmissible. Informally, the thirdtruth value means the sub
omputation should never have o

urred. It means apre-
ondition of the 
ode has been violated, whereas erroneous means a post-
ondition has been violated. Inadmissibility was initially used to express thefa
t that a 
all was ill-typed [12℄ but 
an also be used for other purposes [11℄.Here 
alls whi
h 
ounder be
ause they never be
ome suÆ
iently instantiated are
onsidered inadmissible.Given a tree with truth values for ea
h node, a node is buggy if it is erroneousbut has no erroneous 
hildren. Diagnosis 
onsists of sear
hing the tree for abuggy node. Many sear
h strategies are possible and [11℄ provides very simple
ode for a top-down sear
h. The 
ode �rst 
he
ks that the root is erroneous.



5It then re
ursively sear
hes for bugs in 
hildren and returns them if they exist.Otherwise the root is returned as a buggy node, along with an inadmissible 
hildif any are found. In the next se
tions we �rst de�ne the trees we use, dis
usshow programmer intentions are formalised, give some simple diagnosis sessionsthen make some remarks about sear
h strategy.3.1 Partial proof treesStandard wrong answer de
larative diagnosis uses Prolog proof trees whi
h 
or-respond to su

essful derivations (see [4℄). Ea
h node 
ontains an atomi
 goalwhi
h was proved in the derivation (in its �nal state of evaluation) and the 
hil-dren of a node are the subgoals of the 
lause used to prove the goal. Leaves areatomi
 goals whi
h were mat
hed with unit 
lauses. We use partial proof treeswhi
h 
orrespond to su

essful or 
oundered derivations. The only di�eren
e isthey have an additional 
lass of leaves: atomi
 goals whi
h were never mat
hedwith any 
lause be
ause they were delayed and never resumed.De�nition 1 ((Callable) annotated atom). An annotated atom is an atomi
formula or a term of the form when(C;A), where A is an atomi
 formula andC is a 
ondition of a when meta-
all. It is 
allable if it is an atom or C is truea

ording to the normal Prolog meaning (for \,", \;" and nonvar/1). atom(X)is the atom of annotated atom X.De�nition 2 ((Su

essful or 
oundered) partial proof tree). A partialproof tree for annotated atom A and program P is either1. a node 
ontaining A, where atom(A) is an instan
e of a unit 
lause in P orA is not 
allable, or2. a node 
ontaining A together with partial proof (sub)trees Si for annotatedatom Bi and P , i = 1 : : : n, where atom(A):-B1; : : : Bn is an instan
e of a
lause in P .A partial proof tree is 
oundered if it 
ontains any annotated atoms whi
h arenot 
allable, otherwise it is su

essful.De
larative debuggers use various methods for representing trees and build-ing su
h representations. The de
larative debugger for Mer
ury [13℄ is a relativelymature implementation. A mu
h simpler method (whi
h is impra
ti
al for larges
ale appli
ations) is a meta interpreter whi
h 
onstru
ts an expli
it represen-tation of the tree. Figure 2 is one su
h (poor) implementation whi
h we in
ludefor 
ompleteness. Floundering is dete
ted using the \short 
ir
uit" te
hnique |an a

umulator pair is asso
iated with ea
h subgoal and the two arguments areuni�ed if and when the subgoal su

eeds. Tree nodes 
ontain an annotated atom,this a

umulator pair and a list of subtrees. A sub
omputation is 
oundered ifthe a

umulator arguments in the root of the subtree are not identi
al.



6% solve_atom(A, C0, C, AT): A is an atomi
 goal, possibly wrapped% in when meta-
all, whi
h has su

eeded or floundered;% AT is the 
orresponding partial proof tree with floundered% leaves having a variable as the list of 
hildren;% C0==C if A su

eededsolve_atom(when(Cond, A), C0, C, AT) :- !,AT = node(when(Cond, A), C0, C, Ts),when(Cond, solve_atom(A, C0, C, node(_, _, _, Ts))).solve_atom(A, C0, C, node(A, C0, C, AsTs)) :-
lause(A, As),solve_
onj(As, C0, C, AsTs).% As above for 
onjun
tion; returns list of treessolve_
onj(true, C, C, [℄) :- !.solve_
onj((A, As), C0, C, [AT|AsTs℄) :- !,solve_atom(A, C0, C1, AT),solve_
onj(As, C1, C, AsTs).solve_
onj(A, C0, C, [AT℄) :-solve_atom(A, C0, C, AT).Fig. 2. A meta-interpreter whi
h builds partial proof trees3.2 The programmer's intentionsThe way truth values are assigned to nodes en
odes the user's intended behaviourof the program. For traditional de
larative debugging of wrong answers the in-tended behaviour 
an be spe
i�ed by partitioning the set of ground atoms intotrue atoms and false atoms. There 
an still be non-ground atoms in proof treenodes, whi
h are 
onsidered true if the atom is valid (all instan
es are true).A diÆ
ulty with this two-valued s
heme is that most programmers make im-pli
it assumptions about they way their 
ode will be 
alled, su
h as the \type"of arguments. For example, it is assumed that inserted/3 will be 
alled in a
ontext where (at least one of) the last two arguments must be lists. Althoughinserted(1,a,[1|a℄) 
an su

eed, it is 
ounter-intuitive to 
onsider it to betrue (sin
e it is \ill-typed"), and if it is 
onsidered false then the de�nition ofinserted/3 must be regarded as having a logi
al error. The solution to thisproblem is to be more expli
it about how predi
ates should be 
alled, allowingpre-
onditions [14℄ or saying that 
ertain things are inadmissible [12℄ or havinga three-way partitioning of the set of ground atoms [15℄.In the 
ase of 
oundering the intended behaviour of non-ground atoms mustbe 
onsidered expli
itly. As well as assumptions about types of arguments, we in-evitably make assumptions about how instantiated arguments are. For example,perm/2 is not designed to generate all solutions to 
alls where neither argumentis a (nil-terminated) list and even if it was, su
h usage would most likely 
ausean in�nite loop if used as part of a larger 
omputation. It is reasonable to saythat su
h a 
all to perm/2 should not o

ur, and hen
e should be 
onsidered



7inadmissible, even though more instantiated 
alls are a

eptable. An importantheuristi
 for generating 
ontrol information is that 
alls whi
h have an in�nitenumber of solutions should be avoided [9℄. Instead, su
h a 
all is better delayed,in the hope that other parts of the 
omputation will further instantiate it andmake the number of solutions �nite. If the number of solutions remains in�nitethe result is 
oundering, but this is still preferable to an in�nite loop.We spe
ify the intended behaviour of a program as follows:De�nition 3 (Interpretation). An interpretation is a three-way partitioningof the set of all atoms into those whi
h are inadmissible, valid and erroneous.The set of admissible (valid or erroneous) atoms is 
losed under instantiation(if an atom is admissible then any instan
e of it is admissible), as is the set ofvalid atoms.In our example perm(As0,As) is admissible if and only if either As0 or As are(nil-terminated) lists, and valid if and only if As is a permutation of As0. Thisexpresses the fa
t that either of the arguments 
an be input, and only the listskeleton (not the elements) is required. For example, perm([X℄,[X℄) is valid (asare all its instan
es), perm([X℄,[2|Y℄) is admissible (as are all its instan
es) buterroneous (though an instan
e is valid) and perm([2|X℄,[2|Y℄) is inadmissible(as are all atoms with this as an instan
e). For diagnosing Bug 2, we assumeinserted(A,As0,As) is admissible if and only if As0 is a list. For diagnosingthe other bugs either As0 or As are lists, expressing the di�erent intended modesin these 
ases.Note we do not have di�erent admissibility 
riteria for di�erent sub-goals inthe program| the intended semanti
s is predi
ate-based. Delay primitive basedon predi
ates thus have an advantage of being natural from this perspe
tive. Notealso that atoms in partial proof tree nodes are in their �nal state of instantiationin the 
omputation. It may be that in the �rst 
all to inserted/3 from perm/2,no argument is instantiated to a list (it may delay initially), but as long as it iseventually suÆ
iently instantiated (due to the exe
ution of the re
ursive perm/2
all, for example) it is 
onsidered admissible. However, sin
e admissibility is
losed under instantiation, an atom whi
h is inadmissible in a partial proof tree
ould not have been admissible at any stage of the 
omputation. The debuggeronly deals with whether a 
all 
ounders | the lower level pro
edural details ofwhen it is 
alled, delayed, resumed et 
etera are hidden.Truth values of partial proof tree nodes are de�ned in terms of the user'sintentions:De�nition 4 (Truth of nodes). Given an interpretation I, a partial proof treenode is1. 
orre
t, if the atom in the node is valid in I and the subtree is su

essful,2. inadmissible, if the atom in the node is inadmissible in I, and3. erroneous, otherwise.Note that 
oundered sub
omputations are never 
orre
t. If the atom is insuf-�
iently instantiated (or \ill-typed") they are inadmissible, otherwise they areerroneous.



8?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 2, A, B|C℄, [1, 2, 3℄) ...? e(floundered) perm([2, A, B|C℄, [2, 3℄) ...? e(floundered) perm([A, B|C℄, [3℄) ...? e(floundered) inserted(A, [3|B℄, [3℄) ...? e(floundered) inserted(A, B, [℄) ...? eBUG - in
orre
t delay annotation:when((nonvar(A);nonvar(B)), inserted(B, A, [℄))Fig. 3. Diagnosis of bug 13.3 Diagnosis examplesIn our examples we use a top-down sear
h for a buggy node, whi
h gives arelatively 
lear pi
ture of the partial proof tree. They are 
opied from a
tualruns of our prototype2 ex
ept that repeated identi
al questions are removed.In se
tion 3.4 we dis
uss strategies whi
h 
an redu
e the number of questions;the way diagnoses are printed 
ould also be improved. Figure 3 shows how Bug1 is diagnosed. We use a top-level predi
ate wrong/1 whi
h takes an atomi
goal, builds a partial proof tree for an instan
e of the goal then sear
hes thetree. The truth value of nodes is determined from the user. The debugger printswhether the node su

eeded or 
oundered (this 
an be helpful to the user, andthe reader, though it is not ne
essary), then the atom in the node is printedand the user is expe
ted to say if it is valid (v), inadmissible (i) or erroneous(e)3. The �rst question relates to the �rst answer returned by the goal. It isvalid, so the diagnosis 
ode fails and the 
omputation ba
ktra
ks, building anew partial proof tree for the next answer, whi
h is 
oundered. The root ofthis tree is determined to be erroneous and after a few more questions a buggynode is found. It is a 
oundered leaf node so the appropriate diagnosis is anin
orre
t delay annotation, whi
h 
auses inserted(A,B,[℄) to delay inde�nitely(rather than fail). Ideally we should also display the instan
e of the 
lause whi
h
ontained the 
all (the debugger 
ode in [11℄ 
ould be modi�ed to return thebuggy node and its parent), and the sour
e 
ode lo
ation.Figure 4 shows how Bug 2 is diagnosed. It pro
eeds in a similar way to theprevious example, but due to the di�erent programmer intentions (the mode forinserted/3) the 
oundering 
all inserted(A,[3|B℄,[3℄) is 
onsidered inad-missible rather than erroneous, eventually leading to a di�erent diagnosis. Both
alls in the buggy 
lause instan
e are inadmissible. The debugger of [11℄ returnsboth these inadmissible 
alls as separate diagnoses. For diagnosing 
oundering itis preferable to return a single diagnosis, sin
e the 
oundering of one 
an resultin the 
oundering of another and its not 
lear whi
h are the a
tual 
ulprit(s).2 Available from http://www.
s.mu.oz.au/~lee/papers/ddf/3 To help with missing answer diagnosis it would be preferable to distinguish unsatis-�able atoms from those whi
h are satis�able but not valid.



9?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 2, A, B|C℄, [1, 2, 3℄) ...? e(floundered) perm([2, A, B|C℄, [2, 3℄) ...? e(floundered) perm([A, B|C℄, [3℄) ...? e(floundered) inserted(A, [3|B℄, [3℄) ...? i(floundered) perm([A|B℄, [3|C℄) ...? iBUG - in
orre
t modes/types in 
lause instan
e:perm([A, C|D℄, [3℄) :-when((nonvar([3|B℄);nonvar([℄)), inserted(A, [3|B℄, [3℄)),when((nonvar([C|D℄);nonvar([3|B℄)), perm([C|D℄, [3|B℄)).Fig. 4. Diagnosis of bug 2
?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 3, A|B℄, [1, 2, 3℄) ...? e(floundered) perm([3, A|B℄, [2, 3℄) ...? e(floundered) perm([A|B℄, [2|C℄) ...? i(su

eeded) inserted(3, [2|A℄, [2, 3℄) ...? e(su

eeded) inserted(3, [℄, [3℄) ...? vBUG - in
orre
t 
lause instan
e:inserted(3, [2|A℄, [2, 3℄) :-when((nonvar(A);nonvar([3℄)), inserted(3, [℄, [3℄)).Fig. 5. Diagnosis of bug 3...(floundered) perm([1, 2, 3℄, [1, 3, A|B℄) ...? e(floundered) perm([2, 3℄, [3, A|B℄) ...? e(floundered) inserted(2, [3℄, [3, A|B℄) ...? e(floundered) inserted(2, [A|B℄, [A|C℄) ...? iBUG - in
orre
t modes/types in 
lause instan
e:inserted(2, [3℄, [3, A|B℄) :-when((nonvar([℄);nonvar([A|B℄)), inserted(2, [A|_℄, [A|B℄)).Fig. 6. Diagnosis of bug 3 using goal perm([1,2,3℄,A)



10 Figures 5 and 6 show how Bug 3 is diagnosed. In the �rst 
ase the diagnosis isa logi
al error in the inserted/3 
lause. In the se
ond 
ase the top-level goal isperm([1,2,3℄,A). We assume the user de
ides to diagnose a 
oundered answer,skipping over the previous answers. The diagnosis is a 
ontrol error, similar tothat for Bug 2. Both are legitimate diagnoses, just as logi
al bugs 
an lead toboth missing and wrong answers, whi
h typi
ally result in di�erent diagnoses inde
larative debuggers.3.4 Sear
h strategy% returns 
hildren of a node, floundered ones first
hild(node(_, _, _, Ts), T) :-nonvar(Ts), % not a floundered leaf( member(T, Ts),T = node(_, C0, C, _),C0 \== C % T is floundered; member(T, Ts),T = node(_, C0, C, _),C0 == C % T is not floundered). Fig. 7. Finding 
hildren of a partial proof tree nodeWe have used a very simple sear
h strategy in our examples. Suggestions forsear
h strategies for diagnosing some forms of abnormal termination are givenin [11℄ and these 
an be adapted to 
oundering. From our de�nition of truthvalues for nodes, we know no 
oundered node is 
orre
t. We also know that
oundering is 
aused by (at least one) 
oundered leaf node. Thus we have (atleast one) path of nodes whi
h are not 
orre
t between the root node and aleaf. It makes sense to initially restri
t our sear
h to su
h a path. A top-downsear
h of the path 
an be a
hieved simply by 
areful ordering of the 
hildren(examining 
oundered 
hildren �rst) in a top-down debugger. This is what wehave used for our examples (see Figure 7 for the 
ode). There is an erroneousnode on the path with no erroneous 
hildren on the path. Both bottom-up andbinary sear
h strategies are likely to �nd this node signi�
antly more qui
klythan a top-down sear
h. On
e this node is found, its other 
hildren must alsobe 
he
ked. If there are no erroneous 
hildren the node is buggy. Otherwise, anerroneous 
hild 
an be diagnosed re
ursively, if it is 
oundered, or by establishedwrong answer diagnosis algorithms.



114 Theoreti
al 
onsiderationsWe �rst make some remarks about the soundness and 
ompleteness of thismethod of diagnosis, then dis
uss related theoreti
al work. An admissible atomi
formula whi
h 
ounders has a �nite partial proof tree with an erroneous rootand 
learly this must have a buggy node. Sin
e the sear
h spa
e is �nite, 
om-pleteness 
an easily be a
hieved. Soundness 
riteria 
ome from the de�nition ofbuggy nodes (erroneous nodes with no erroneous 
hildren). The three 
lasses ofbugs mentioned in Se
tion 2 give a 
omplete 
ategorisation of bugs whi
h 
ause
oundering. Logi
al errors 
ause su

essful buggy nodes. In
orre
t delay annota-tions 
ause 
oundered leaf nodes whi
h are admissible but delay. Confusion overthe modes 
auses 
oundered internal nodes whi
h are admissible but have one ormore 
oundered inadmissible 
hildren. If there are also su

essful inadmissible(\ill-typed") 
hildren it may be more natural to say it is 
aused by a logi
al(\type") error.De
larative diagnosis of wrong answers 
an hide the 
omplex pro
edural de-tails of exe
ution be
ause su

ess is independent of the 
omputation rule. Our
urrent work on diagnosis arose out of more theoreti
al work on 
oundering [16℄.Nearly all delay primitives have the property that if a 
ertain 
all 
an pro
eed(rather than delay), any more instantiated version of the 
all 
an also pro
eed.An important result whi
h follows from this property is similar to the result
on
erning su

ess: whether a 
omputation 
ounders, and the �nal instantiationof variables, depends on the delay annotations but not on the order in whi
hsuÆ
iently instantiated 
all are sele
ted. Non-
oundering is also 
losed under in-stantiation, so it is natural for admissibility to inherit this restri
tion and partialproof trees provide a basis for intuitive diagnoses. Our diagnosis method 
an bee�e
tively applied to other delay primitives for whi
h this property holds simplyby 
hanging the de�nition of 
allable annotated atoms.The use of the term \de
larative" in this paper may have 
aused unease insome readers. However, there is an interpretation of when meta-
alls whi
h allowsmodel-theoreti
 view of our diagnosis method (see [16℄ for further details). Wepartition the set of fun
tion symbols into program fun
tion symbols and extrane-ous fun
tion symbols. The program, goals and set of admissible atoms only 
on-tain program fun
tion symbols. We interpret nonvar(X) as meaning the prin
iplefun
tion symbol of X is a program fun
tion symbol. Instead of a when meta 
allwhen(C,G) being interpreted as G, we interpret it as a disjun
tion (G;�C), where�C is the negation of C. For example, the meaning of when(nonvar(X),p(X)) isp(X) or the prin
iple fun
tion symbol of X is extraneous. Extraneous fun
tionsymbols are essentially used to en
ode variables.A goal has a 
oundered derivation whi
h uses the normal pro
edural inter-pretation of when meta-
alls if and only if it has a su

essful derivation using anadded disjun
t (�C) in the alternative interpretation. The sets of admissible andvalid atoms 
an also be en
oded in the same way: if an atom 
ontaining variablesis admissible (or valid), the atom with the variables instantiated to extraneousfun
tion symbols should be admissible (or valid, respe
tively). En
oding ourprevious example, perm([$℄,[$℄) would be valid, perm([$℄,[2|$$℄) would be



12erroneous and perm([2|$℄,[2|$$℄) would be inadmissible, assuming $ and $$are extraneous fun
tion symbols. We then have a partitioning of ground atomsinto those whi
h are true (valid), false, and inadmissible | a three-valued in-terpretation of the kind used dis
ussed [15℄. If this interpretation is not a three-valued model, bug symptoms 
an be diagnosed using de
larative wrong answerdiagnosis. All the diagnosis examples in this paper 
an be reprodu
ed in thisway, though 
oundering of valid atoms (whi
h is rare in pra
ti
e) 
annot be di-agnosed. In this paper the way truth values are assigned to tree nodes over
omesthis limitation.5 Con
lusionThere has long been a need for tools and te
hniques to diagnose unexpe
ted
oundering in Prolog with delay primitives, and related 
lasses of bug symptomsin other logi
 programming languages. The philosophy behind delay primitivesin logi
 programming languages is largely based on Kowalski's equation: Algo-rithm = Logi
 + Control [5℄. By using more 
omplex 
ontrol, the logi
 
an besimpler. This allows simpler reasoning about 
orre
tness of answers from su
-
essful derivations | we 
an use a purely de
larative view, ignoring the 
ontrolbe
ause it only a�e
ts the pro
edural semanti
s. When there are bugs relatedto 
ontrol it is not 
lear the trade-o� is su
h a good one. The 
ontrol and logi

an no longer be separated. Sin
e the normal de
larative view 
annot be used,the only obvious option is to use the pro
edural view. Unfortunately, even sim-ple programs 
an exhibit very 
omplex pro
edural behaviour, making it verydiÆ
ult to diagnose and 
orre
t bugs using this view of the program.In the 
ase of 
oundering, a mu
h simpler high level approa
h turns out tobe possible. The 
ombination of the logi
 and 
ontrol 
an be viewed as justslightly di�erent logi
, allowing de
larative diagnosis te
hniques to be used. Thepro
edural details of 
alls delaying and the interleaving of sub
omputations 
anbe ignored. The user 
an simply put ea
h atomi
 formula into one of three 
ate-gories. The �rst is inadmissible: atoms whi
h should not be 
alled be
ause theyare insuÆ
iently instantiated and expe
ted to 
ounder (or are \ill-typed" or vi-olate some pre-
ondition of the pro
edure). The se
ond is valid: atoms for whi
hall instan
es are true and are expe
ted to su

eed. The third is erroneous: atomswhi
h are legitimate to 
all but whi
h should not su

eed without being fur-ther instantiated (they are not valid, though an instan
e may be). A 
ounderedderivation 
an be viewed as a tree and this three-valued intended semanti
s usedto lo
ate a bug in an instan
e of a single 
lause or a 
all with a delay annotation.Referen
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