
De
larative Diagnosis of FlounderingLee NaishUniversity of Melbourne, Melbourne 3010, Australialee�
sse.unimelb.edu.au,http://www.
sse.unimelb.edu.au/~lee/Abstra
t. Many logi
 programming languages have delay primitiveswhi
h allow
oroutining. This introdu
es a
lass of bug symptoms |
omputations
an
ounder when they are intended to su

eed or �nitelyfail. For
on
urrent logi
 programs this is normally
alled deadlo
k. Sim-ilarly,
onstraint logi
 programs
an fail to invoke
ertain
onstraintsolvers be
ause variables are insuÆ
iently instantiated or
onstrained.Diagnosing su
h faults has re
eived relatively little attention to date.Sin
e delay primitives a�e
t the pro
edural but not the de
larative viewof programs, it may be expe
ted that debugging would have to
onsiderthe often
omplex details of interleaved exe
ution. However, re
ent workon semanti
s has suggested an alternative approa
h. In this paper weshow how the de
larative debugging paradigm
an be used to diagnoseunexpe
ted
oundering, insulating the user from the
omplexities of theexe
ution.Keywords: logi
 programming,
oroutining, delay, debugging,
ounder-ing, deadlo
k,
onstraints1 Introdu
tionThe �rst Prolog systems used a stri
t left to right evaluation strategy, or
om-putation rule. However, sin
e the �rst few years of logi
 programming therehave been systems whi
h support
oroutining between di�erent sub-goals [1℄.Although the default order is normally left to right, individual
alls
an delayif
ertain arguments are insuÆ
iently instantiated, and later resume, after otherparts of the
omputation have further instantiated them. Su
h fa
ilities are nowwidely supported in Prolog systems. They also gave rise to the
lass of
on
urrentlogi
 programming languages, su
h as Parlog [2℄, where the default evaluationstrategy is parallel exe
ution and similar delay me
hanisms are used for syn
hro-nisation and prevention of unwanted nondeterminism. Delay me
hanisms havealso been in
uential for the development of
onstraint logi
 programming [3℄.Delays are often used when
onstraints are \too hard" to be handled by eÆ
ient
onstraint solvers, for example, non-linear
onstraints over real numbers.Of
ourse, more features means more
lasses of bugs. In theory delays don'ta�e
t soundness of Prolog (see [4℄1) | they
an be seen as a�e
ting the \
on-trol" of the program without a�e
ting the logi
 [5℄. However, they do introdu
e1 In pra
ti
e,
oundering within negation
an
ause unsoundness.

2a new
lass of bug symptoms. A
all
an delay and never be resumed (be
auseit is never suÆ
iently instantiated); the
omputation is said to
ounder. MostProlog systems with delays still print variable bindings for
oundered deriva-tions in the same way as su

essful derivations (in this paper we refer to theseas \
oundered answers"), and may also print some indi
ation that the
omputa-tion
oundered. Floundered answers are not ne
essarily valid, or even satis�able,a

ording to the de
larative reading of the program. They provide little usefulinformation and generally indi
ate the presen
e of a bug. In
on
urrent logi
programs the equivalent of
oundering is normally
alled deadlo
k | the
om-putation terminates with no \pro
ess" (
all) suÆ
iently instantiated to pro
eed.In
onstraint logi
 programming systems, the analogue is a
omputation whi
hterminates with some insuÆ
iently instantiated
onstraints not solved (or even
he
ked for satis�ability). Alternatively, if some
onstraints are insuÆ
iently in-stantiated they may end up being solved by less eÆ
ient means than expe
ted,su
h as exhaustive sear
h over all possible instan
es.There is a
lear need for tools and te
hniques to help diagnose
ounderingin Prolog (and analogous bug symptoms in other logi
 programming languages),yet there has been very little resear
h in this area to date. There has beensome work on showing
oundering is impossible using synta
ti
 restri
tions ongoals and programs (parti
ularly logi
 databases), or stati
 analysis methods(for example, [6℄[7℄). However, this is a far
ry from general purpose methods fordiagnosing
oundering. In this paper we present su
h a method. Furthermore,it is a surprisingly attra
tive method, being based on the de
larative debuggingparadigm [8℄ whi
h is able to hide many of the pro
edural details of a
ompu-tation. The paper is stru
tured as follows. We �rst give some examples of howvarious
lasses of bugs
an lead to
oundering. We then present our methodof diagnosing
oundering, give examples, and dis
uss how our simple prototype
ould be improved. Next we brie
y
onsider some more theoreti
al aspe
ts, then
on
lude. Basi
 familiarity of Prolog with delays and de
larative debugging isassumed.2 ExampleFigure 1 gives a permutation program whi
h has simple logi
 but is made re-versible by use of delaying primitives and
areful ordering of sub-goals in perm/2(see [9℄ for further dis
ussion). The delay primitive used is the \when meta-
all":a
all when(Cond,A) delays until
ondition Cond is satis�ed, then
alls A. For ex-ample, the re
ursive
all to perm/2 will delay until at least one of its argumentsare non-variables. Generally there are other features supported, su
h as delay-ing until a variable is ground; we don't dis
uss them here, though our methodand prototype support them. A great number of delay primitives have been pro-posed. Some, like the when meta-
all, are based on
alls. Others are based onpro
edures (a�e
ting all
alls to the pro
edure), whi
h is often more
onvenientand tends to
lutter the sour
e
ode less. Our general approa
h to diagnosis isnot e�e
ted by the style of delay primitive. The when meta-
all is by far the

3% perm(As0, As): As = permutation of list As0% As0 or As should be inputperm([℄, [℄).perm([A0|As0℄, [A|As℄) :-when((nonvar(As1) ; nonvar(As)),inserted(A0, As1, [A|As℄)),when((nonvar(As0) ; nonvar(As1)),perm(As0, As1)).% inserted(A, As0, As): As = list As0 with element A inserted%......% As0 should be input %... Bug 2% As0 or As should be inputinserted(A, As0, [A|As0℄).inserted(A, [A1|As0℄, [A1|As℄) :-%...when(nonvar(As0), %... Bug 2%...when((nonvar(As0) ; nonvar(A)), %... Bug 1when((nonvar(As0) ; nonvar(As)),%.......inserted(A, AS0, As)). %... Bug 3inserted(A, As0, As)).Fig. 1. A reversible permutation programmost portable of the more
exible delay primitives, whi
h is our main reason for
hoosing it. We have developed the
ode in this paper using SWI-Prolog.We
onsider three separate possible bugs whi
h
ould have been introdu
ed,shown as
ommented-out lines pre
eding the
orre
t versions. They exemplifythree
lasses of errors whi
h
an lead to
oundering: in
orre
t delay annota-tions,
onfusion over the modes of predi
ates, and logi
al errors. With the �rstbug, an in
orre
t delay annotation on the re
ursive
all to inserted/3, severalbug symptoms are exhibited. The
all perm([X,Y,Z℄,A) behaves
orre
tly butperm([1,2,3℄,A) su

eeds with the answers A=[1,2,3℄ and A=[1,3,2℄, thenloops inde�nitely. We don't
onsider diagnosis of loops in this paper, thoughthey are an important symptom of in
orre
t
ontrol. The
all perm(A,[1,2,3℄)su

eeds with the answer A=[1,2,3℄ then has three further
oundered answers,A=[1,2,_,_|_℄, A=[1,_,_|_℄ and A=[_,_|_℄, before terminating with failure.The se
ond bug is a more subtle
ontrol error. When inserted/3 was
odedwe assume the intention was the se
ond argument should always be input andthe delay annotation is
orre
t with respe
t to this intention. However, somemodes of perm/2 require inserted/3 to work with just the third argumentinput. When
oding perm/2 the programmer was either unaware of this or was
onfused about what modes inserted/3 supported. Although this version ofthe program behaves identi
ally to Bug 1 for the goal perm(A,[1,2,3℄), thebug diagnosis will be di�erent be
ause the programmer intentions are di�erent.The mistake was made in the
oding of perm/2, and this is re
e
ted in thediagnosis. The simplest way to �x the bug is
hange the intentions and
ode forinserted/3, but we only deal with diagnosis in this paper.

4 The third bug is a logi
al error in the re
ursive
all to inserted/3. Due to anin
orre
t variable name, other variables remain uninstantiated and this
an ulti-mately result in
oundering. The
all perm([1,2,3℄,A) �rst su

eeds with an-swer A=[1,2,3℄. There are four other su

essful answers whi
h are satis�able butnot valid, for example, A=[1,2,3|_℄ and A=[3,1|_℄. These
ould be diagnosedby existing wrong answer de
larative debugging algorithms, though some earlyapproa
hes assumed bug symptoms were unsatis�able atoms (see [10℄). Theseanswers are interleaved with four
oundered answers, su
h as A=[1,3,_|_℄,whi
h are also satis�able but not valid. The
all perm(A,[1,2,3℄) su

eedswith the answer A=[1,2,3℄ then has three
oundered answers, also in
ludingA=[1,3,_|_℄. The
all perm([A,1|B℄,[2,3℄) should �nitely fail but returns asingle
oundered answer with A=3.Be
ause delays are the basi

ause of
oundering and they are inherentlypro
edural, it is natural to assume that diagnosing unexpe
ted
oundering re-quires a pro
edural view of the exe
ution. Even with su
h a simple program andgoals, diagnosis using just tra
es of
oundered exe
utions
an be extremely dif-�
ult. Sub
omputations may delay and be resumed multiple times as variablesin
rementally be
ome further instantiated. Re
onstru
ting how a single sub
om-putation pro
eeds
an be very diÆ
ult, espe
ially if there is also ba
ktra
kinginvolved. Although some tools have been developed, su
h as printing the historyof instantiation states for a variable, diagnosis of
oundering has remained very
hallenging.3 De
larative diagnosis of
ounderingTo diagnose unexpe
ted
oundering in pure Prolog programs with delays we usean instan
e of the three-valued de
larative debugging s
heme des
ribed in [11℄.We des
ribe the instan
e pre
isely in the following se
tions, but �rst introdu
ethe general s
heme. A
omputation is represented as a tree, with ea
h nodeasso
iated with a se
tion of sour
e
ode (a
lause in this instan
e) and subtreesrepresenting sub
omputations. The trees we use here are a generalisation of prooftrees. Ea
h node has a truth value whi
h expresses how the sub
omputation
ompares with the intentions of the programmer. Normally the truth values ofonly some nodes are required and are found by asking the user questions. Threetruth values are used:
orre
t, erroneous, and inadmissible. Informally, the thirdtruth value means the sub
omputation should never have o

urred. It means apre-
ondition of the
ode has been violated, whereas erroneous means a post-
ondition has been violated. Inadmissibility was initially used to express thefa
t that a
all was ill-typed [12℄ but
an also be used for other purposes [11℄.Here
alls whi
h
ounder be
ause they never be
ome suÆ
iently instantiated are
onsidered inadmissible.Given a tree with truth values for ea
h node, a node is buggy if it is erroneousbut has no erroneous
hildren. Diagnosis
onsists of sear
hing the tree for abuggy node. Many sear
h strategies are possible and [11℄ provides very simple
ode for a top-down sear
h. The
ode �rst
he
ks that the root is erroneous.

5It then re
ursively sear
hes for bugs in
hildren and returns them if they exist.Otherwise the root is returned as a buggy node, along with an inadmissible
hildif any are found. In the next se
tions we �rst de�ne the trees we use, dis
usshow programmer intentions are formalised, give some simple diagnosis sessionsthen make some remarks about sear
h strategy.3.1 Partial proof treesStandard wrong answer de
larative diagnosis uses Prolog proof trees whi
h
or-respond to su

essful derivations (see [4℄). Ea
h node
ontains an atomi
 goalwhi
h was proved in the derivation (in its �nal state of evaluation) and the
hil-dren of a node are the subgoals of the
lause used to prove the goal. Leaves areatomi
 goals whi
h were mat
hed with unit
lauses. We use partial proof treeswhi
h
orrespond to su

essful or
oundered derivations. The only di�eren
e isthey have an additional
lass of leaves: atomi
 goals whi
h were never mat
hedwith any
lause be
ause they were delayed and never resumed.De�nition 1 ((Callable) annotated atom). An annotated atom is an atomi
formula or a term of the form when(C;A), where A is an atomi
 formula andC is a
ondition of a when meta-
all. It is
allable if it is an atom or C is truea

ording to the normal Prolog meaning (for \,", \;" and nonvar/1). atom(X)is the atom of annotated atom X.De�nition 2 ((Su

essful or
oundered) partial proof tree). A partialproof tree for annotated atom A and program P is either1. a node
ontaining A, where atom(A) is an instan
e of a unit
lause in P orA is not
allable, or2. a node
ontaining A together with partial proof (sub)trees Si for annotatedatom Bi and P , i = 1 : : : n, where atom(A):-B1; : : : Bn is an instan
e of a
lause in P .A partial proof tree is
oundered if it
ontains any annotated atoms whi
h arenot
allable, otherwise it is su

essful.De
larative debuggers use various methods for representing trees and build-ing su
h representations. The de
larative debugger for Mer
ury [13℄ is a relativelymature implementation. A mu
h simpler method (whi
h is impra
ti
al for larges
ale appli
ations) is a meta interpreter whi
h
onstru
ts an expli
it represen-tation of the tree. Figure 2 is one su
h (poor) implementation whi
h we in
ludefor
ompleteness. Floundering is dete
ted using the \short
ir
uit" te
hnique |an a

umulator pair is asso
iated with ea
h subgoal and the two arguments areuni�ed if and when the subgoal su

eeds. Tree nodes
ontain an annotated atom,this a

umulator pair and a list of subtrees. A sub
omputation is
oundered ifthe a

umulator arguments in the root of the subtree are not identi
al.

6% solve_atom(A, C0, C, AT): A is an atomi
 goal, possibly wrapped% in when meta-
all, whi
h has su

eeded or floundered;% AT is the
orresponding partial proof tree with floundered% leaves having a variable as the list of
hildren;% C0==C if A su

eededsolve_atom(when(Cond, A), C0, C, AT) :- !,AT = node(when(Cond, A), C0, C, Ts),when(Cond, solve_atom(A, C0, C, node(_, _, _, Ts))).solve_atom(A, C0, C, node(A, C0, C, AsTs)) :-
lause(A, As),solve_
onj(As, C0, C, AsTs).% As above for
onjun
tion; returns list of treessolve_
onj(true, C, C, [℄) :- !.solve_
onj((A, As), C0, C, [AT|AsTs℄) :- !,solve_atom(A, C0, C1, AT),solve_
onj(As, C1, C, AsTs).solve_
onj(A, C0, C, [AT℄) :-solve_atom(A, C0, C, AT).Fig. 2. A meta-interpreter whi
h builds partial proof trees3.2 The programmer's intentionsThe way truth values are assigned to nodes en
odes the user's intended behaviourof the program. For traditional de
larative debugging of wrong answers the in-tended behaviour
an be spe
i�ed by partitioning the set of ground atoms intotrue atoms and false atoms. There
an still be non-ground atoms in proof treenodes, whi
h are
onsidered true if the atom is valid (all instan
es are true).A diÆ
ulty with this two-valued s
heme is that most programmers make im-pli
it assumptions about they way their
ode will be
alled, su
h as the \type"of arguments. For example, it is assumed that inserted/3 will be
alled in a
ontext where (at least one of) the last two arguments must be lists. Althoughinserted(1,a,[1|a℄)
an su

eed, it is
ounter-intuitive to
onsider it to betrue (sin
e it is \ill-typed"), and if it is
onsidered false then the de�nition ofinserted/3 must be regarded as having a logi
al error. The solution to thisproblem is to be more expli
it about how predi
ates should be
alled, allowingpre-
onditions [14℄ or saying that
ertain things are inadmissible [12℄ or havinga three-way partitioning of the set of ground atoms [15℄.In the
ase of
oundering the intended behaviour of non-ground atoms mustbe
onsidered expli
itly. As well as assumptions about types of arguments, we in-evitably make assumptions about how instantiated arguments are. For example,perm/2 is not designed to generate all solutions to
alls where neither argumentis a (nil-terminated) list and even if it was, su
h usage would most likely
ausean in�nite loop if used as part of a larger
omputation. It is reasonable to saythat su
h a
all to perm/2 should not o

ur, and hen
e should be
onsidered

7inadmissible, even though more instantiated
alls are a

eptable. An importantheuristi
 for generating
ontrol information is that
alls whi
h have an in�nitenumber of solutions should be avoided [9℄. Instead, su
h a
all is better delayed,in the hope that other parts of the
omputation will further instantiate it andmake the number of solutions �nite. If the number of solutions remains in�nitethe result is
oundering, but this is still preferable to an in�nite loop.We spe
ify the intended behaviour of a program as follows:De�nition 3 (Interpretation). An interpretation is a three-way partitioningof the set of all atoms into those whi
h are inadmissible, valid and erroneous.The set of admissible (valid or erroneous) atoms is
losed under instantiation(if an atom is admissible then any instan
e of it is admissible), as is the set ofvalid atoms.In our example perm(As0,As) is admissible if and only if either As0 or As are(nil-terminated) lists, and valid if and only if As is a permutation of As0. Thisexpresses the fa
t that either of the arguments
an be input, and only the listskeleton (not the elements) is required. For example, perm([X℄,[X℄) is valid (asare all its instan
es), perm([X℄,[2|Y℄) is admissible (as are all its instan
es) buterroneous (though an instan
e is valid) and perm([2|X℄,[2|Y℄) is inadmissible(as are all atoms with this as an instan
e). For diagnosing Bug 2, we assumeinserted(A,As0,As) is admissible if and only if As0 is a list. For diagnosingthe other bugs either As0 or As are lists, expressing the di�erent intended modesin these
ases.Note we do not have di�erent admissibility
riteria for di�erent sub-goals inthe program| the intended semanti
s is predi
ate-based. Delay primitive basedon predi
ates thus have an advantage of being natural from this perspe
tive. Notealso that atoms in partial proof tree nodes are in their �nal state of instantiationin the
omputation. It may be that in the �rst
all to inserted/3 from perm/2,no argument is instantiated to a list (it may delay initially), but as long as it iseventually suÆ
iently instantiated (due to the exe
ution of the re
ursive perm/2
all, for example) it is
onsidered admissible. However, sin
e admissibility is
losed under instantiation, an atom whi
h is inadmissible in a partial proof tree
ould not have been admissible at any stage of the
omputation. The debuggeronly deals with whether a
all
ounders | the lower level pro
edural details ofwhen it is
alled, delayed, resumed et
etera are hidden.Truth values of partial proof tree nodes are de�ned in terms of the user'sintentions:De�nition 4 (Truth of nodes). Given an interpretation I, a partial proof treenode is1.
orre
t, if the atom in the node is valid in I and the subtree is su

essful,2. inadmissible, if the atom in the node is inadmissible in I, and3. erroneous, otherwise.Note that
oundered sub
omputations are never
orre
t. If the atom is insuf-�
iently instantiated (or \ill-typed") they are inadmissible, otherwise they areerroneous.

8?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 2, A, B|C℄, [1, 2, 3℄) ...? e(floundered) perm([2, A, B|C℄, [2, 3℄) ...? e(floundered) perm([A, B|C℄, [3℄) ...? e(floundered) inserted(A, [3|B℄, [3℄) ...? e(floundered) inserted(A, B, [℄) ...? eBUG - in
orre
t delay annotation:when((nonvar(A);nonvar(B)), inserted(B, A, [℄))Fig. 3. Diagnosis of bug 13.3 Diagnosis examplesIn our examples we use a top-down sear
h for a buggy node, whi
h gives arelatively
lear pi
ture of the partial proof tree. They are
opied from a
tualruns of our prototype2 ex
ept that repeated identi
al questions are removed.In se
tion 3.4 we dis
uss strategies whi
h
an redu
e the number of questions;the way diagnoses are printed
ould also be improved. Figure 3 shows how Bug1 is diagnosed. We use a top-level predi
ate wrong/1 whi
h takes an atomi
goal, builds a partial proof tree for an instan
e of the goal then sear
hes thetree. The truth value of nodes is determined from the user. The debugger printswhether the node su

eeded or
oundered (this
an be helpful to the user, andthe reader, though it is not ne
essary), then the atom in the node is printedand the user is expe
ted to say if it is valid (v), inadmissible (i) or erroneous(e)3. The �rst question relates to the �rst answer returned by the goal. It isvalid, so the diagnosis
ode fails and the
omputation ba
ktra
ks, building anew partial proof tree for the next answer, whi
h is
oundered. The root ofthis tree is determined to be erroneous and after a few more questions a buggynode is found. It is a
oundered leaf node so the appropriate diagnosis is anin
orre
t delay annotation, whi
h
auses inserted(A,B,[℄) to delay inde�nitely(rather than fail). Ideally we should also display the instan
e of the
lause whi
h
ontained the
all (the debugger
ode in [11℄
ould be modi�ed to return thebuggy node and its parent), and the sour
e
ode lo
ation.Figure 4 shows how Bug 2 is diagnosed. It pro
eeds in a similar way to theprevious example, but due to the di�erent programmer intentions (the mode forinserted/3) the
oundering
all inserted(A,[3|B℄,[3℄) is
onsidered inad-missible rather than erroneous, eventually leading to a di�erent diagnosis. Both
alls in the buggy
lause instan
e are inadmissible. The debugger of [11℄ returnsboth these inadmissible
alls as separate diagnoses. For diagnosing
oundering itis preferable to return a single diagnosis, sin
e the
oundering of one
an resultin the
oundering of another and its not
lear whi
h are the a
tual
ulprit(s).2 Available from http://www.
s.mu.oz.au/~lee/papers/ddf/3 To help with missing answer diagnosis it would be preferable to distinguish unsatis-�able atoms from those whi
h are satis�able but not valid.

9?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 2, A, B|C℄, [1, 2, 3℄) ...? e(floundered) perm([2, A, B|C℄, [2, 3℄) ...? e(floundered) perm([A, B|C℄, [3℄) ...? e(floundered) inserted(A, [3|B℄, [3℄) ...? i(floundered) perm([A|B℄, [3|C℄) ...? iBUG - in
orre
t modes/types in
lause instan
e:perm([A, C|D℄, [3℄) :-when((nonvar([3|B℄);nonvar([℄)), inserted(A, [3|B℄, [3℄)),when((nonvar([C|D℄);nonvar([3|B℄)), perm([C|D℄, [3|B℄)).Fig. 4. Diagnosis of bug 2
?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 3, A|B℄, [1, 2, 3℄) ...? e(floundered) perm([3, A|B℄, [2, 3℄) ...? e(floundered) perm([A|B℄, [2|C℄) ...? i(su

eeded) inserted(3, [2|A℄, [2, 3℄) ...? e(su

eeded) inserted(3, [℄, [3℄) ...? vBUG - in
orre
t
lause instan
e:inserted(3, [2|A℄, [2, 3℄) :-when((nonvar(A);nonvar([3℄)), inserted(3, [℄, [3℄)).Fig. 5. Diagnosis of bug 3...(floundered) perm([1, 2, 3℄, [1, 3, A|B℄) ...? e(floundered) perm([2, 3℄, [3, A|B℄) ...? e(floundered) inserted(2, [3℄, [3, A|B℄) ...? e(floundered) inserted(2, [A|B℄, [A|C℄) ...? iBUG - in
orre
t modes/types in
lause instan
e:inserted(2, [3℄, [3, A|B℄) :-when((nonvar([℄);nonvar([A|B℄)), inserted(2, [A|_℄, [A|B℄)).Fig. 6. Diagnosis of bug 3 using goal perm([1,2,3℄,A)

10 Figures 5 and 6 show how Bug 3 is diagnosed. In the �rst
ase the diagnosis isa logi
al error in the inserted/3
lause. In the se
ond
ase the top-level goal isperm([1,2,3℄,A). We assume the user de
ides to diagnose a
oundered answer,skipping over the previous answers. The diagnosis is a
ontrol error, similar tothat for Bug 2. Both are legitimate diagnoses, just as logi
al bugs
an lead toboth missing and wrong answers, whi
h typi
ally result in di�erent diagnoses inde
larative debuggers.3.4 Sear
h strategy% returns
hildren of a node, floundered ones first
hild(node(_, _, _, Ts), T) :-nonvar(Ts), % not a floundered leaf(member(T, Ts),T = node(_, C0, C, _),C0 \== C % T is floundered; member(T, Ts),T = node(_, C0, C, _),C0 == C % T is not floundered). Fig. 7. Finding
hildren of a partial proof tree nodeWe have used a very simple sear
h strategy in our examples. Suggestions forsear
h strategies for diagnosing some forms of abnormal termination are givenin [11℄ and these
an be adapted to
oundering. From our de�nition of truthvalues for nodes, we know no
oundered node is
orre
t. We also know that
oundering is
aused by (at least one)
oundered leaf node. Thus we have (atleast one) path of nodes whi
h are not
orre
t between the root node and aleaf. It makes sense to initially restri
t our sear
h to su
h a path. A top-downsear
h of the path
an be a
hieved simply by
areful ordering of the
hildren(examining
oundered
hildren �rst) in a top-down debugger. This is what wehave used for our examples (see Figure 7 for the
ode). There is an erroneousnode on the path with no erroneous
hildren on the path. Both bottom-up andbinary sear
h strategies are likely to �nd this node signi�
antly more qui
klythan a top-down sear
h. On
e this node is found, its other
hildren must alsobe
he
ked. If there are no erroneous
hildren the node is buggy. Otherwise, anerroneous
hild
an be diagnosed re
ursively, if it is
oundered, or by establishedwrong answer diagnosis algorithms.

114 Theoreti
al
onsiderationsWe �rst make some remarks about the soundness and
ompleteness of thismethod of diagnosis, then dis
uss related theoreti
al work. An admissible atomi
formula whi
h
ounders has a �nite partial proof tree with an erroneous rootand
learly this must have a buggy node. Sin
e the sear
h spa
e is �nite,
om-pleteness
an easily be a
hieved. Soundness
riteria
ome from the de�nition ofbuggy nodes (erroneous nodes with no erroneous
hildren). The three
lasses ofbugs mentioned in Se
tion 2 give a
omplete
ategorisation of bugs whi
h
ause
oundering. Logi
al errors
ause su

essful buggy nodes. In
orre
t delay annota-tions
ause
oundered leaf nodes whi
h are admissible but delay. Confusion overthe modes
auses
oundered internal nodes whi
h are admissible but have one ormore
oundered inadmissible
hildren. If there are also su

essful inadmissible(\ill-typed")
hildren it may be more natural to say it is
aused by a logi
al(\type") error.De
larative diagnosis of wrong answers
an hide the
omplex pro
edural de-tails of exe
ution be
ause su

ess is independent of the
omputation rule. Our
urrent work on diagnosis arose out of more theoreti
al work on
oundering [16℄.Nearly all delay primitives have the property that if a
ertain
all
an pro
eed(rather than delay), any more instantiated version of the
all
an also pro
eed.An important result whi
h follows from this property is similar to the result
on
erning su

ess: whether a
omputation
ounders, and the �nal instantiationof variables, depends on the delay annotations but not on the order in whi
hsuÆ
iently instantiated
all are sele
ted. Non-
oundering is also
losed under in-stantiation, so it is natural for admissibility to inherit this restri
tion and partialproof trees provide a basis for intuitive diagnoses. Our diagnosis method
an bee�e
tively applied to other delay primitives for whi
h this property holds simplyby
hanging the de�nition of
allable annotated atoms.The use of the term \de
larative" in this paper may have
aused unease insome readers. However, there is an interpretation of when meta-
alls whi
h allowsmodel-theoreti
 view of our diagnosis method (see [16℄ for further details). Wepartition the set of fun
tion symbols into program fun
tion symbols and extrane-ous fun
tion symbols. The program, goals and set of admissible atoms only
on-tain program fun
tion symbols. We interpret nonvar(X) as meaning the prin
iplefun
tion symbol of X is a program fun
tion symbol. Instead of a when meta
allwhen(C,G) being interpreted as G, we interpret it as a disjun
tion (G;�C), where�C is the negation of C. For example, the meaning of when(nonvar(X),p(X)) isp(X) or the prin
iple fun
tion symbol of X is extraneous. Extraneous fun
tionsymbols are essentially used to en
ode variables.A goal has a
oundered derivation whi
h uses the normal pro
edural inter-pretation of when meta-
alls if and only if it has a su

essful derivation using anadded disjun
t (�C) in the alternative interpretation. The sets of admissible andvalid atoms
an also be en
oded in the same way: if an atom
ontaining variablesis admissible (or valid), the atom with the variables instantiated to extraneousfun
tion symbols should be admissible (or valid, respe
tively). En
oding ourprevious example, perm([$℄,[$℄) would be valid, perm([$℄,[2|$$℄) would be

12erroneous and perm([2|$℄,[2|$$℄) would be inadmissible, assuming $ and $$are extraneous fun
tion symbols. We then have a partitioning of ground atomsinto those whi
h are true (valid), false, and inadmissible | a three-valued in-terpretation of the kind used dis
ussed [15℄. If this interpretation is not a three-valued model, bug symptoms
an be diagnosed using de
larative wrong answerdiagnosis. All the diagnosis examples in this paper
an be reprodu
ed in thisway, though
oundering of valid atoms (whi
h is rare in pra
ti
e)
annot be di-agnosed. In this paper the way truth values are assigned to tree nodes over
omesthis limitation.5 Con
lusionThere has long been a need for tools and te
hniques to diagnose unexpe
ted
oundering in Prolog with delay primitives, and related
lasses of bug symptomsin other logi
 programming languages. The philosophy behind delay primitivesin logi
 programming languages is largely based on Kowalski's equation: Algo-rithm = Logi
 + Control [5℄. By using more
omplex
ontrol, the logi

an besimpler. This allows simpler reasoning about
orre
tness of answers from su
-
essful derivations | we
an use a purely de
larative view, ignoring the
ontrolbe
ause it only a�e
ts the pro
edural semanti
s. When there are bugs relatedto
ontrol it is not
lear the trade-o� is su
h a good one. The
ontrol and logi

an no longer be separated. Sin
e the normal de
larative view
annot be used,the only obvious option is to use the pro
edural view. Unfortunately, even sim-ple programs
an exhibit very
omplex pro
edural behaviour, making it verydiÆ
ult to diagnose and
orre
t bugs using this view of the program.In the
ase of
oundering, a mu
h simpler high level approa
h turns out tobe possible. The
ombination of the logi
 and
ontrol
an be viewed as justslightly di�erent logi
, allowing de
larative diagnosis te
hniques to be used. Thepro
edural details of
alls delaying and the interleaving of sub
omputations
anbe ignored. The user
an simply put ea
h atomi
 formula into one of three
ate-gories. The �rst is inadmissible: atoms whi
h should not be
alled be
ause theyare insuÆ
iently instantiated and expe
ted to
ounder (or are \ill-typed" or vi-olate some pre-
ondition of the pro
edure). The se
ond is valid: atoms for whi
hall instan
es are true and are expe
ted to su

eed. The third is erroneous: atomswhi
h are legitimate to
all but whi
h should not su

eed without being fur-ther instantiated (they are not valid, though an instan
e may be). A
ounderedderivation
an be viewed as a tree and this three-valued intended semanti
s usedto lo
ate a bug in an instan
e of a single
lause or a
all with a delay annotation.Referen
es1. Clark, K., M
Cabe, F.: The
ontrol fa
ilities of IC-Prolog. In Mi
hie, D., ed.:Expert systems in the mi
roele
troni
 age. Edinburgh University Press (1979)122{149

132. Gregory, S.: Design, appli
ation and implementation of a parallel logi
 program-ming language. Addison-Weseley (1987)3. Ja�ar, J., Lassez, J.L.: From uni�
ation to
onstraints. In Furukawa, K., Tanaka,H., Fujisaki, T., eds.: Pro
eedings of the Sixth Logi
 Programming Conferen
e,Tokyo, Japan (1987) 1{18 published as Le
ture Notes in Computer S
ien
e 315 bySpringer-Verlag.4. Lloyd, J.W.: Foundations of logi
 programming. Springer series in symboli

om-putation. Springer-Verlag, New York (1984)5. Kowalski, R.: Algorithm = Logi
 + Control. CACM 22 (1979) 424{4356. Marriott, K., S�ndergaard, H., Dart, P.: A
hara
terization of non-
ounderinglogi
 programs. In Debray, S., Hermenegildo, M., eds.: Pro
eedings of the NorthAmeri
an Conferen
e on Logi
 Programming, Austin, Texas, The MIT Press (1990)661{6807. Marriott, K., Gar
��a de la Banda, M., Hermenegildo, M.: Analyzing Logi
 Pro-grams with Dynami
 S
heduling. In: 20th. Annual ACM Conf. on Prin
iples ofProgramming Languages, ACM (1994) 240{2548. Shapiro, E.Y.: Algorithmi
 program debugging. MIT Press, Cambridge, Mas-sa
husetts (1983)9. Naish, L.: Negation and
ontrol in Prolog. Number 238 in Le
ture Notes inComputer S
ien
e. Springer-Verlag, New York (1986)10. Naish, L.: A de
larative debugging s
heme. Journal of Fun
tional and Logi
Programming 1997 (1997)11. Naish, L.: A three-valued de
larative debugging s
heme. Australian ComputerS
ien
e Communi
ations 22 (2000) 166{17312. Pereira, L.M.: Rational debugging in logi
 programming. In Shapiro, E., ed.:Pro
eedings of the Third International Conferen
e on Logi
 Programming, London,England (1986) 203{210 published as Le
ture Notes in Computer S
ien
e 225 bySpringer-Verlag.13. Somogyi, Z., Henderson, F.J.: The implementation te
hnology of the Mer
urydebugger. In: Pro
eedings of the Tenth Workshop on Logi
 Programming Envi-ronments, Las Cru
es, New Mexi
o (1999) 35{4914. Drabent, W., Nadjm-Tehrani, S., Maluszynski, J.: The use of assertions in algo-rithmi
 debugging. In: Pro
eedings of the 1988 International Conferen
e on FifthGeneration Computer Systems, Tokyo, Japan (1988) 573{58115. Naish, L.: A three-valued semanti
s for logi
 programmers. Theory and Pra
ti
eof Logi
 Programming 6 (2006) 509{53816. Naish, L.: A de
larative view of
oundering. Te
hni
al Report Submitted for pub-li
ation, Department of Computer S
ien
e, University of Melbourne, Melbourne,Australia (2006)

