
De
larative Diagnosis of Floundering

Lee NaishComputer S
ien
e andSoftware EngineeringUniversity of Melbourne

Slides, paper and
ode are on the web:http://www.
s.mu.oz.au/~lee/papers/ddf/

1

OutlineBa
kgroundExample programDiagnosis methodExample diagnosesTheoryCon
lusion

2

Ba
kgroundAs well as the normal left to right exe
ution, many Prolog systemssupport
oroutiningA
all
an delay if it is insuÆ
iently instantiated, and be resumedlater, after some variables have been boundBut sometimes this never happens | the
all is never resumed andthe
omputation
oundersSimilarly,
on
urrent logi
 programs
an deadlo
k and
onstraintlogi
 programs may never invoke (eÆ
ient)
onstraint solvers

3

Ba
kground (
ont.)Algorithm = Logi
 + ControlInstead of making the logi
 more
omplex, we
an make the
ontrolmore
omplexReasoning about
orre
tness of su

essful derivations is made easierBut for
oundering we
an't ignore
ontrolThe pro
edural semanti
s
an be very
omplexMaybe its not su
h a good trade-o� after all?
4

A Buggy Program% perm(As0, As): As = permutation of list As0% As0 or As should be inputperm([℄, [℄).perm([A0|As0℄, [A|As℄) :-when((nonvar(As1) ; nonvar(As)),inserted(A0, As1, [A|As℄)),when((nonvar(As0) ; nonvar(As1)),perm(As0, As1)).Uses the \when meta-
all" for delayingEg, re
ursive perm(As0,As1)
all delays until As0 or As1 areinstantiated

5

A Buggy Program (
ont.)% inserted(A, As0, As): As = list As0 with A inserted%......% As0 should be input %... Bug 2% As0 or As should be inputinserted(A, As0, [A|As0℄).inserted(A, [A1|As0℄, [A1|As℄) :-%...when(nonvar(As0), %... Bug 2%...when((nonvar(As0) ; nonvar(A)), %... Bug 1when((nonvar(As0) ; nonvar(As)),%.......inserted(A, AS0, As)). %... Bug 3inserted(A, As0, As)).
6

Bug SymptomsBug 1: perm([X,Y,Z℄,A) behaves
orre
tly but perm([1,2,3℄,A)su

eeds with A=[1,2,3℄ and A=[1,3,2℄, then loopsBugs 1 and 2: perm(A,[1,2,3℄) su

eeds with A=[1,2,3℄ then hasthree
oundered answers, A=[1,2,_|_℄, A=[1,_|_℄ and A=[_|_℄,then failsBug 3: perm([1,2,3℄,A) su

eeds with A=[1,2,3℄, then foursatis�able (but not valid) answers, eg A=[1,2,3|_℄, and four
oundered answers, eg A=[1,3,_|_℄Bug 3: perm(A,[1,2,3℄) su

eeds with A=[1,2,3℄, then three
oundered answers, eg A=[1,3,_|_℄Bug 3: perm([A,1|B℄,[2,3℄) has
oundered answer A=3

7

De
larative diagnosis of
ounderingAn instan
e of the three-valued debugging s
heme is usedThe s
heme represents a
omputation as a treeEa
h node is
orre
t, erroneous or inadmissibleA node is buggy if it is erroneous but has no erroneous
hildrenThe simplest sear
h strategy is top-downFirst,
he
k the root is erroneousRe
ursively sear
h for buggy nodes in
hildren; if found return themOtherwise return the root as the bug (along with
hildren, notingany inadmissible ones)
8

Partial Proof TreesA proof tree
orresponds to a su

essful derivationEa
h node is at atom whi
h was provedThe
hildren are the subgoals of the body of the
lause instan
eusedLeaves are atoms mat
hed with fa
tsA partial proof tree
orresponds to a su

essful or
ounderedderivationLeaves
an also be
alls whi
h delayed but were never resumed

9

WARNINGThe following program
ontains material whi
hmay be o�ensive to some viewers
10

Building Partial Proof Trees% solve_atom(A, C0, C, AT): A is an atomi
 goal% (possibly wrapped in a when meta-
all)% whi
h has su

eeded or floundered;% AT is the
orresponding partial proof tree; floundered% leaves have a variable as the list of
hildren;% C0==C if A su

eededsolve_atom(when(Cond, A), C0, C, AT) :-!,AT = node(when(Cond, A), C0, C, Ts),when(Cond, solve_atom(A, C0, C, node(_, _, _, Ts))).solve_atom(A, C0, C, node(A, C0, C, AsTs)) :-
lause(A, As),solve_
onj(As, C0, C, AsTs).
11

Building Partial Proof Trees (
ont.)% As above for
onjun
tion; returns list of treessolve_
onj(true, C, C, [℄) :-!.solve_
onj((A, As), C0, C, [AT|AsTs℄) :-!,solve_atom(A, C0, C1, AT),solve_
onj(As, C1, C, AsTs).solve_
onj(A, C0, C, [AT℄) :-solve_atom(A, C0, C, AT).

YUK!

12

The programmer's intentionsFor diagnosing wrong answers the programmer
an just
onsiderground atomsAtoms in the proof tree are
orre
t if they are validInadmissibility
an be used for ill-typed atoms, eginserted(1,a,[1|a℄)For
oundering the we need to
onsider non-ground atomsThe set of admissible (valid or erroneous) atoms is
losed underinstantiation, as is the set of valid atomsSu

essful partial proof tree nodes are
orre
t (valid), erroneous orinadmissible, depending on the atomFloundered partial proof tree nodes are erroneous, erroneous orinadmissible, respe
tively
13

Our intentions for perm/2perm(As0,As) is admissible i� As0 or As are (nil-terminated) listsand valid if As is a permutation of As0eg: perm([X℄,[X℄), perm([X℄,[2|Y℄), perm([2|X℄,[2|Y℄)For Bug 2 inserted(A,As0,As) is admissible i� As0 is a listFor Bugs 1,3 its admissible i� As0 or As are lists
14

Diagnosis example: Bug 1?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 2, A, B|C℄, [1, 2, 3℄) ...? e(floundered) perm([2, A, B|C℄, [2, 3℄) ...? e(floundered) perm([A, B|C℄, [3℄) ...? e(floundered) inserted(A, [3|B℄, [3℄) ...? e(floundered) inserted(A, B, [℄) ...? eBUG - in
orre
t delay annotation:when((nonvar(A);nonvar(B)), inserted(B, A, [℄))

15

Diagnosis example: Bug 2?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 2, A, B|C℄, [1, 2, 3℄) ...? e(floundered) perm([2, A, B|C℄, [2, 3℄) ...? e(floundered) perm([A, B|C℄, [3℄) ...? e(floundered) inserted(A, [3|B℄, [3℄) ...? i(floundered) perm([A|B℄, [3|C℄) ...? iBUG - in
orre
t modes/types in
lause instan
e:perm([A, C|D℄, [3℄) :-when((nonvar([3|B℄);nonvar([℄)),inserted(A, [3|B℄, [3℄)),when((nonvar([C|D℄);nonvar([3|B℄)),perm([C|D℄, [3|B℄)).
16

Diagnosis example: Bug 3?- wrong(perm(A,[1,2,3℄)).(su

eeded) perm([1, 2, 3℄, [1, 2, 3℄) ...? v(floundered) perm([1, 3, A|B℄, [1, 2, 3℄) ...? e(floundered) perm([3, A|B℄, [2, 3℄) ...? e(floundered) perm([A|B℄, [2|C℄) ...? i(su

eeded) inserted(3, [2|A℄, [2, 3℄) ...? e(su

eeded) inserted(3, [℄, [3℄) ...? vBUG - in
orre
t
lause instan
e:inserted(3, [2|A℄, [2, 3℄) :-when((nonvar(A);nonvar([3℄)),inserted(3, [℄, [3℄)).
17

Diagnosis example: Bug 3...(floundered) perm([1, 2, 3℄, [1, 3, A|B℄) ...? e(floundered) perm([2, 3℄, [3, A|B℄) ...? e(floundered) inserted(2, [3℄, [3, A|B℄) ...? e(floundered) inserted(2, [A|B℄, [A|C℄) ...? iBUG - in
orre
t modes/types in
lause instan
e:inserted(2, [3℄, [3, A|B℄) :-when((nonvar([℄);nonvar([A|B℄)),inserted(2, [A|_℄, [A|B℄)).
18

Sear
h strategyIf the root is
oundered there is a in
orre
t path down to a leafFirst �nd the bottom-most erroneous node on this path!This path
an be sear
hed top-down by ordering
hildren sensibly(as in the examples)Or it
an be sear
hed bottom-up, or with binary sear
hOther
hildren need to be
he
ked (they
an be diagnosedre
ursively)

19

TheorySoundness and
ompleteness of diagnosis are straightforwardFloundering is only
aused by in
orre
t delay annotations,
onfusion over intended modes, and logi
al errorsA model-theoreti
 interpretation
an be given by en
oding variableswith fun
tion symbols not appearing elsewhere, eg perm([$℄,[$℄)When meta-
alls
an be interpreted as disjun
tionswhen((nonvar(As0) ; nonvar(As1)), perm(As0, As1)) isinterpreted as (evar(As0), evar(As) ; perm(As0, As1))There is a
oundered derivation i� there is a su

essful derivationusing the en
odingOur diagnosis algorithm is like three-valued wrong answer diagnosisusing the en
oded derivation
20

Con
lusionFor
oundering, Logi
 + Control = Logi
0De
larative diagnosis te
hniques
an be applied quite easilyThe
omplex details of
alls delaying, interleaved exe
ution,ba
ktra
king et

an be ignored
21

