Declarative Diagnosis of Floundering

Lee Naish
Computer Science and
Software Engineering

University of Melbourne

Slides, paper and code are on the web:

http://www.cs.mu.oz.au/ " lee/papers/ddf/




Background

Example program

Diagnosis method

Example diagnoses
Theory

Conclusion

Outline




Background

As well as the normal left to right execution, many Prolog systems

support coroutining

A call can delay if it is insufficiently instantiated, and be resumed

later, after some variables have been bound

But sometimes this never happens — the call is never resumed and

the computation flounders

Similarly, concurrent logic programs can deadlock and constraint

logic programs may never invoke (efficient) constraint solvers




Background (cont.)

Algorithm = Logic + Control

Instead of making the logic more complex, we can make the control

more complex

Reasoning about correctness of successtul derivations is made easier
But for floundering we can’t ignore control

The procedural semantics can be very complex

Maybe its not such a good trade-off after all?




A Buggy Program

% perm(AsO, As): As = permutation of list AsO
% AsO or As should be input

perm([], [1).
perm([AO|AsO], [AlAs]) :-
when((nonvar(Asl) ; nonvar(As)),
inserted (A0, Asl, [AlAs])),
when ((nonvar (AsO) ; nonvar(Asl)),
perm(AsO, Asl)).

Uses the “when meta-call” for delaying

Eg, recursive perm(AsO,As1) call delays until AsO or As1 are

instantiated




A Buggy Program (cont.)

% inserted(A, AsO, As): As = list AsO with A inserted
%» AsO should be input h... Bug 2

%» AsO or As should be input

inserted (A, AsO, [A|AsO]).

inserted(A, [A1]|AsO], [Al]|As]) :-

%...when(nonvar (AsO), h... Bug 2

%...when((nonvar(AsO) ; nonvar(A)), %... Bug 1

when ((nonvar (AsO) ; nonvar(As)),

inserted(A, ASO, As)). ... Bug 3
inserted (A, AsO, As)).




Bug Symptoms

Bug 1: perm([X,Y,Z],A) behaves correctly but perm([1,2,3],4)
succeeds with A=[1,2,3] and A=[1,3,2], then loops

Bugs 1 and 2: perm(A, [1,2,3]) succeeds with A=[1,2,3] then has
three floundered answers, A=[1,2,_|_]1, A=[1,_|_] and A=[_1|_],
then fails

Bug 3: perm([1,2,3],A) succeeds with A=[1,2,3], then four
satisfiable (but not valid) answers, eg A=[1,2,3]_], and four

floundered answers, eg A=[1,3,_|_]

Bug 3: perm(A,[1,2,3]) succeeds with A=[1,2,3], then three

floundered answers, eg A=[1,3,_|_]

Bug 3: perm([A,1|B],[2,3]) has floundered answer A=3




Declarative diagnosis of floundering

An instance of the three-valued debugging scheme is used

The scheme represents a computation as a tree

Each node is correct, erroneous or inadmaissible

A node is buggy if it is erroneous but has no erroneous children
The simplest search strategy is top-down

First, check the root is erroneous

Recursively search for buggy nodes in children; if found return them

Otherwise return the root as the bug (along with children, noting

any inadmissible ones)




Partial Proof Trees

A proof tree corresponds to a successful derivation
Each node is at atom which was proved

The children are the subgoals of the body of the clause instance

used

Leaves are atoms matched with facts

A partial proof tree corresponds to a successful or floundered

derivation

Leaves can also be calls which delayed but were never resumed




WARNING

The following program contains material which

may be offensive to some viewers




T
T
T
T
T
To

Building Partial Proof Trees

solve_atom(A, CO, C, AT): A is an atomic goal
(possibly wrapped in a when meta-call)

which has succeeded or floundered;

AT is the corresponding partial proof tree; floundered
leaves have a variable as the 1list of children;

CO==C if A succeeded

solve_atom(when(Cond, A), CO, C, AT) :-

AT = node(when(Cond, A), CO, C, Ts),
when(Cond, solve_atom(A, CO, C, mnode(_, _, _, Ts))).

solve_atom(A, CO, C, node(A, CO, C, AsTs)) :-

clause(A, As),
solve_conj(As, CO, C, AsTs).



Building Partial Proof Trees (cont.)

%» As above for conjunction; returns list of trees
solve_conj(true, C, C, [1) :-
|

solve_conj((A, As), CO, C, [AT|AsTs]) :-
b,
solve_atom(A, CO, C1, AT),
solve_conj(As, C1, C, AsTs).
solve_conj(A, CO, C, [AT]) :-

solve_atom(A, CO, C, AT).

YUK!




The programmer’s intentions

For diagnosing wrong answers the programmer can just consider

ground atoms
Atoms in the proof tree are correct if they are valid

Inadmissibility can be used for ill-typed atoms, eg
inserted(1l,a,[1]a])

For floundering the we need to consider non-ground atoms

The set of admissible (valid or erroneous) atoms is closed under

instantiation, as is the set of valid atoms

Successful partial proof tree nodes are correct (valid), erroneous or

inadmissible, depending on the atom

Floundered partial prootf tree nodes are erroneous, erroneous or

inadmissible, respectively




Our intentions for perm/2

perm(AsO,As) is admissible iff AsO or As are (nil-terminated) lists

and valid if As is a permutation of AsO
eg: perm( [X], [X]), perm([X], [2]Y]), perm([2]X], [2]Y])
For Bug 2 inserted(A,AsO,As) is admissible iff AsO is a list

For Bugs 1,3 its admissible iff AsO or As are lists




Diagnosis example: Bug 1

7- wrong(perm(A,[1,2,3])).

(succeeded) perm([1, 2, 3], [1, 2, 3]) ...7 v
(floundered) perm([1, 2, A, BIC], [1, 2, 3])
(floundered) perm([2, A, BIC], [2, 3]) ...7 e
(floundered) perm([A, BIC], [3]) ...7 e
(floundered) inserted(A, [3|B], [3])
(floundered) inserted(A, B, []) ...7 e

BUG - incorrect delay annotation:

when((nonvar (A) ;nonvar(B)), inserted(B, A, []))




Diagnosis example: Bug 2

7- wrong(perm(A,[1,2,3])).
(succeeded) perm([1, 2, 3], [1, 2, 3]) ...7 v
(floundered) perm([1, 2, A, BIC], [1, 2, 3]) ...
(floundered) perm([2, A, BIC], [2, 3]) ...7 e
(floundered) perm([A, BIC], [3]) ...7 e
(floundered) inserted(A, [3|B], [3]) ...7
(floundered) perm([A[B], [3[C]) ...7 i
BUG - incorrect modes/types in clause instance:
perm([A, C|D], [3]) :-
when ((nonvar ([3|B]) ;nonvar([])),
inserted(A, [3|B], [3])),
when ((nonvar ([C|D]) ;nonvar([3|B])),
perm([CID], [3IB])).




Diagnosis example: Bug 3

7- wrong(perm(A,[1,2,3])).
(succeeded) perm([1, 2, 3], [1, 2, 3])
(floundered) perm([1, 3, A[B], [1, 2, 3])
(floundered) perm([3, A[IB], [2, 3]) ...7 e
(floundered) perm([A[B], [2[C]) ...7 i
(succeeded) inserted(3, [2]|A], [2, 3])
(succeeded) inserted(3, [1, [3]) ...7 v
BUG - incorrect clause instance:
inserted(3, [2|A], [2, 3]) :-

when ((nonvar (A) ;nonvar([3])),

inserted(3, [1, [3])).




Diagnosis example: Bug 3

(floundered) perm([1, 2, 3], [1, 3, A[IB])
(floundered) perm([2, 3], [3, AIB]) ...7 e
(floundered) inserted(2, [3], [3, A|IB]) ...7 e
(floundered) inserted(2, [A|B], [A|C]) ...? i
BUG - incorrect modes/types in clause instance:
inserted(2, [3], [3, A|B]) :-

when ((nonvar([]) ;nonvar([A|B])),

inserted(2, [A|_]1, [AIB])).



Search strategy

If the root is floundered there is a incorrect path down to a leaf
First find the bottom-most erroneous node on this path!

This path can be searched top-down by ordering children sensibly

(as in the examples)
Or it can be searched bottom-up, or with binary search

Other children need to be checked (they can be diagnosed

recursively)




Theory

Soundness and completeness of diagnosis are straightforward

Floundering is only caused by incorrect delay annotations,

confusion over intended modes, and logical errors

A model-theoretic interpretation can be given by encoding variables

with function symbols not appearing elsewhere, eg perm([$], [$]1)
When meta-calls can be interpreted as disjunctions

when ((nonvar (AsO) ; nonvar(Asl)), perm(AsO, Asl)) is
interpreted as (evar(AsO), evar(As) ; perm(AsO, Asl))

There is a loundered derivation iff there is a successful derivation

using the encoding

Our diagnosis algorithm is like three-valued wrong answer diagnosis

using the encoded derivation




Conclusion

For floundering, Logic + Control = Logic’

Declarative diagnosis techniques can be applied quite easily

The complex details of calls delaying, interleaved execution,

backtracking etc can be ignored




