
Probabilistic Declarative Debugging

Lee Naish

Computer Science and

Software Engineering

University of Melbourne

1

Outline

Declarative Debugging

Search strategy

Estimating probabilities

Examples

Conclusion

2

But first . . .

“God does not play dice” — Einstein

“God not only plays dice but also sometimes throws them where

they cannot be seen” — Hawking

3

A puzzle for the rational

Suppose N dice of various designs have been created

Each die i, 1 ≤ i ≤ N is thrown Si times, Si > 0 and on at least

one throw of some die the side of the die which comes up is blank

— at least one of the dice is defective!

Each die i is thrown Ki more times, Ki ≥ 0 and no blanks come up

1. What are the odds that die i is defective and

2. assuming it is, what are the odds its next throw comes up

blank?

You may want to introduce some simplifying assumptions such as

only one of the dice is defective

4

A puzzle for the rational (cont.)

For example

• Two dice (N = 2)

• One suspect throw of each (S1 = 1, S2 = 1)

• One hundred known correct throws of die 1 and none for die 2

(K1 = 100, K2 = 0)

It seems most likely that die 1 is ok and die 2 is defective

5

Diagnosing wrong answers in Prolog

A successful Prolog computation can be viewed as a proof tree

Each node is an atomic goal which was proved

Each leaf is an instance of a fact

Each internal node is an instance of the head of a rule; the children

are instances of subgoals in the body of the rule

6

Example code — naive reverse

% reverse of a list

reverse([], []).

reverse([A|As], Bs) :-

reverse(As, Cs),

append(Cs, [A], Bs).

% concatenation of two lists

append([], As, As).

append([A|As], Bs, [A|Cs]) :-

append(As, Bs, Cs).

7

Example proof tree

append([],[2],[2])append([],[1],[1])

reverse([1],[1]) append([1],[2],[1,2])

reverse([2,1],[1,2])

reverse([],[])

8

Diagnosing bugs

Nodes can be correct (valid in the intended interpretation) or

erroneous

A node is buggy if it is erroneous but has no erroneous children

It correspond to an incorrect clause instance: the body is valid but

the head is not

Our mission is to seek out buggy nodes

9

A tree with correct and erroneous nodes

C E

CE

C

C E

E

C

C

C

10

More generally . . .

We need to reconcile a computation (which has a fault) with a

program

A computation can be viewed as a tree(!)

Each node corresponds to an execution of a section of code

Internal nodes use the results of one or more sub-computations

We need a way of determining if a subcomputation is correct

11

Search strategy

A bottom-up search is possible (but typically performs poorly)

A top-down search which follows a path of erroneous nodes is

reasonably effective

Divide and query repeatedly finds a subtree which is (about) half

the size of the tree and probes the root of that subtree

If the root is erroneous we narrow the search to the subtree,

otherwise we delete the subtree

Around log N probes are required, which is “optimal”

12

Doing better than optimal

The average case is more important that the worst case

Nodes correspond to code segments and some code segments are

more likely to be buggy than others

A large subtree may only use a small part of the code; a small

subtree may have a relatively high likelyhood of being erroneous

Some probes are much more costly than others — we want to

optimise the total cost, not just the number of probes

Note: naively incorporating cost estimates into divide and query

can make average performance worse

13

Doing better than optimal (cont.)

Example: Suppose our intended interpretation for naive reverse

was unusual (eg, only first and last elements are swapped)

We run it with a 1000 element list and the answer is wrong. . .

Divide and query would ask about the reverse of a list of length

(around) 700

But unless our interpretation is very contrived this subtree is

almost certainly erroneous, and the question asked is complex

Using a length of 10 (say) the question is much simpler but its still

very likely erroneous — all the code is used, just not as much

14

Probabilistic search algorithm

We estimate the probability of each node being erroneous and the

cost of probing it

The expected total cost of searching tree T using the root of

subtree S as the first probe is

• probe cost(root(S)), plus

• Pr(S erroneous)× cost of searching S, plus

• Pr(S correct)× cost of searching T \ S

We want to pick a subtree S which minimises this

The cost of searching S (and T \ S) is approximated using log2 of

the size times the average probe cost (full “look-ahead” would take

too long)

We use a special case for the root being likely to be buggy

15

Computing probabilities, naively

Assume we don’t know whats in each node in the tree

Each node has a small probability ǫ of being buggy, a subtree of

size N has a probability of 1 − (1 − ǫ)N ; approximately Nǫ

This leads to divide and query

If we don’t know the tree structure, top-down is rational

If we don’t know ǫ is small, bottom-up is rational

16

Computing probabilities, naively (cont.)

But we do know (or can find out) about nodes in the tree

And probabilities are not independent — two nodes may use the

same code (for example)

Consider choosing a (possibly defective) die and repeatedly tossing

it versus repeatedly choosing a die and tossing it

We can weaken independence assumptions by using conditional

probabilities and Bayes theorem:

Pr(A|B) = Pr(A)Pr(B|A)/Pr(B)

So, Pr(a throw is blank) =

Pr(die is defective) × Pr(a throw is blank | die is defective)

17

Computing probabilities

Inputs: A suspect tree T , a set of clauses C with instances in T ,

counts of instances of each of these clauses in correct trees

Outputs: For each subtree S of suspect tree T , an estimated

probability P (S) that S contains a buggy node

KC is the number of instances of C in correct trees

SC is the number of instances of C in T

For each clause C ∈ C

Let P0(C) be the prior likelihood of C being buggy

% P1(C) is the probability that an instance of clause C with

% a correct body is buggy, given that C is buggy

For each clause C ∈ C

If C is ground P1(C) = 1, otherwise

let 0 ≤ P1(C) ≤ 1 maximise (1−P1(C))KC (1− (1−P1(C))SC)

18

Computing probabilities (cont.)

% Scale down relative likelihoods of clauses being buggy

% using number of instances in correct subtrees and P1 values

For each clause C ∈ C

P2(C) = P0(C)(1 − P1(C))KC

% P3(C) is the probability that clause C is buggy

% given that at least one clause is buggy

For each clause C ∈ C

P3(C) = P2(C)/(1 −
∏

C′∈C
(1 − P2(C

′)))

% P4(S, C) is the probability that an instance of C in S is

% buggy

For each clause C ∈ C and subtree S of T

P4(S, C) = P3(C)(1 − (1 − P1(C))MC), where

MC is the number of occurrences of C in S

19

Computing probabilities (cont.)

% P5(S) is the probability that a clause instance in S is

% buggy

For each subtree S of T

P5(S) = 1 −
∏

C in S
(1 − P4(S, C))

% P (S) is the probability that a clause instance in S is

% buggy given that a clause instance in T is buggy

For each subtree S of T

P (S) = P5(S)/P5(T)

20

Computing P1

P1 can be thought of as a measure of how “consistent” a bug is

Lots of bugs are very consistent but if P1 is too high, search is

directed away from “spasmodic” bugs

We pick P1 to maximise the probability of the observations

We could use the median of the probability distribution instead

Or different percentiles depending on (eg) clause complexity

Or estimate prior probability distributions

The maximum method results in finding consistent bugs very

quickly and behaviour like divide and query for spasmodic bugs

21

Comparative P1 values

SC 2 1 10 9 5 1

KC 0 1 0 1 5 9

P1 (max) 1.000 0.500 1.000 0.226 0.129 0.100

P1 (med) 0.653 0.500 0.545 0.359 0.191 0.148

P1 (U=.2,R=3) 0.781 0.561 0.722 0.430 0.212 0.165

SC 100 99 50 1

KC 0 1 50 99

P1 (max) 1.000 0.045 0.014 0.010

P1 (med) 0.505 0.300 0.024 0.017

P1 (U=.2,R=3) 0.706 0.386 0.025 0.017

22

Size of first subtree probed for reverse

Algorithm L=4 L=16 L=64 L=256

N=15 N=153 N=2145 N=33153

Divide and query 6 78 1081 16653

P1(C) = {1.0, 1.0, 1.0, 1.0} 3 6 6 6

P1(C) = {1.0, 0.8, 0.8, 0.8} 3 6 6 10

P1(C) = {1.0, 0.5, 0.5, 0.5} 3 6 10 15

P1(C) = {1.0, 0.1, 0.1, 0.1} 1 1 36 55

P1(C) med. KC = {1, 1, 1, 1} 6 10 21 28

P1(C) med. KC = {1, 1, 5, 50} 6 10 45 136

P1(C) max. KC = {1, 1, 1, 1} 6 21 171 1653

P1(C) max. KC = {1, 1, 5, 50} 3 21 171 1830

23

Buggy merge sort

merge_sort(Us, Ss) :-

length(Us, N),

msort_n(N, Us, Ss, _). % last arg should be []

% Ss is first N element of Us sorted, RestUs is the rest.

% First clause only used for merge_sort of empty list.

msort_n(0, Us, [], Us).

msort_n(1, [U|Us], [U], Us).

msort_n(N, Us, Ss, RestUs) :-

N > 1,

N1 is N // 2,

msort_n(N1, Us, Ss1, Us2),

msort_n(N1, Us2, Ss2, RestUs), % BUG

% N2 is N-N1, msort_n(N2, Us2, Ss2, RestUs), % OK

merge(Ss1, Ss2, Ss).

24

Buggy merge sort (cont.)

% merge of two sorted lists

merge([], Ss, Ss).

merge([S|Ss], [], [S|Ss]).

merge([A|As], [B|Bs], [A|Ss]) :-

A =< B,

merge(As, [B|Bs], Ss).

merge([A|As], [B|Bs], [B|Ss]) :-

A > B,

merge(As, [B|Bs], Ss). % BUG

% merge([A|As], Bs, Ss). % OK

25

The more consistent bug — two worst cases

?- wrong(merge sort([〈(up to) 56 elements〉,3,5,8,1,2,4,6,7],

[〈(up to) 56 elements〉,1,1,1,1,2,4,6,7])). % 378 nodes

msort n(2,[6,7],[6,7],[]) valid? y

merge([8],[1],[1,1]) valid? n

merge([],[1],[1]) valid? y

Bug: merge([8],[1],[1,1]) :- merge([],[1],[1]).

?- wrong(merge sort([〈120 elements〉,3,5,8,1,2,4,6,7],

[〈120 elements〉,1,1,1,1,2,4,6,7])). % 830 nodes

msort n(4,[3,5,8,1,2,4,6,7],[1,1,1,1],[2,4,6,7]) valid? n

merge([3],[5],[3,5]) valid? y

merge([8],[1],[1,1]) valid? n

merge([],[1],[1]) valid? y

Bug: merge([8],[1],[1,1]) :- merge([],[1],[1]).

26

The more spasmodic bug

?-wrong(merge sort([9,0,3,5,8,1,2,4,6,7],[0,1,2,3,4,5,8,9])).

merge([5,9],[8],[5,8,9]) valid? y

msort n(2,[2,4,6,7],[2,4],[6,7]) valid? y

msort n(10,[9,0,3,5,8,1,2,4,6,7],[0,1,2,3,4,5,8,9],[6,7])

valid? n

msort n(5,[8,1,2,4,6,7],[1,2,4,8],[6,7]) valid? n

merge([1,8],[2,4],[1,2,4,8]) valid? y

merge([8],[1],[1,8]) valid? y

msort n(2,[8,1,2,4,6,7],[1,8],[2,4,6,7]) valid? y

Bug: msort n(5,[8,1,2,4,6,7],[1,2,4,8],[6,7]) :-

5 > 1,

2 is 5 // 2,

msort n(2,[8,1,2,4,6,7],[1,8],[2,4,6,7]),

msort n(2,[2,4,6,7],[2,4],[6,7]),

merge([1,8],[2,4],[1,2,4,8]).

27

. . . with prior tests cases

?-wrong(merge sort([9,0,3,5,8,1,2,4,6,7],[0,1,2,3,4,5,8,9])).

msort n(10,[9,0,3,5,8,1,2,4,6,7],[0,1,2,3,4,5,8,9],[6,7])

valid? n

msort n(5,[8,1,2,4,6,7],[1,2,4,8],[6,7]) valid? n

merge([1,8],[2,4],[1,2,4,8]) valid? y

msort n(2,[2,4,6,7],[2,4],[6,7]) valid? y

merge([8],[1],[1,8]) valid? y

msort n(2,[8,1,2,4,6,7],[1,8],[2,4,6,7]) valid? y

Bug: 〈as before〉

28

Tarantula

Graphical tool; color of statement = %passed
%passed+%failed

Could consider number of times code is used in each test case

For debugging, best ignore code which is never used in a failed test

case and ignore test cases which only use such code

Percentages lose information

Declarative debugging could use more than one failed test case

(suspect tree)

29

Conclusion

The relative performance of different search strategies can be

explained by appealing to rationality: bottom-up → top-down →

divide and query → our algorithm → . . .

For “spasmodic” bugs log N probes is the best we can do

For “consistent” bugs some search strategies perform much better

Passed and failed test cases can be used to help estimate bug

consistency and adapt the search strategy accordingly

Probability theory can be used to control the search strategy and

reconcile multiple sources of information

The variation in probe costs should be considered

30

