
Duals in Spectral Fault Localization

Lee Naish
Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia
Email: lee@unimelb.edu.au

Hua Jie Lee
Dolby Laboratories, Sydney, Australia

Email: huajie.lee@gmail.com

Abstract—Numerous set similarity metrics have been used for
ranking “suspiciousness” of code in spectral fault localization,
which uses execution profiles of passed and failed test cases to
help locate bugs. Research in data mining has identified several
forms of possibly desirable symmetry in similarity metrics. Here1

we define several forms of “duals” of metrics, based on these
forms of symmetries. Use of these duals, plus some other slight
modifications, leads to several new similarity metrics. We show
that versions of several previously proposed metrics are optimal,
or nearly optimal, for locating single bugs. We also show that a
form of duality exists between locating single bugs and locating
“deterministic” bugs (execution of which always results in test
case failure). Duals of the various single bug optimal metrics are
optimal for locating such bugs. This more theoretical work leads
to a conjecture about how different metrics could be chosen for
different stages of software development.

I. INTRODUCTION

Bugs are pervasive in software under development and
tracking them down contributes greatly to the cost of software
development. One of many useful sources of data to help
diagnosis is the dynamic behaviour of software as it is executed
over a set of test cases where it can be determined if each result
is correct or not; each test case is said to pass or fail. Software
can be instrumented automatically to gather data known as
program spectra [1], such as the statements that are executed,
for each test case. If a certain statement is executed in many
failed tests but few passed tests we may conclude it is likely
to be buggy. Typically the raw data is aggregated to get the
numbers of passed and failed tests for which each statement
is/isn’t executed. Some function is applied to this aggregated
data to rank the statements, from those most likely to be buggy
to those least likely. We refer to such functions as set similarity
metrics, or simply metrics. A programmer can then use the
ranking to help find a bug.

We make the following contributions:

• We define three forms of duals of set similarity metrics
which can be used for spectral fault localization.

• We define slight variants of several previously pro-
posed similarity metrics used for fault localization,
motivated by other factors identified in the literature.

• We prove that several duals of these modified metrics
are optimal (or nearly optimal) for locating single
bugs, and validate this empirically.

1An almost identical version of this paper will appear in the proceedings
of ASWEC 2013 and you will be able to get from IEEE, for a price.

• We demonstrate a form of duality exists between
locating single bugs and deterministic bugs, which
always cause failure of test cases.

• We define a class of metrics and prove such metrics
are optimal for locating deterministic bugs. Duals of
the single bug optimal metrics are optimal for locating
deterministic bugs.

• We suggest that a form of contour plot of metrics
allows useful insights.

• We conjecture that the stage of software development
should influence the choice of metric used for fault
localization.

Section II gives a brief introduction to spectral fault
localization (some of this and other background material is
based on [2] without additional citation; all prior technical
material is cited explicitly) and gives the definitions of metrics
from the literature that we adapt, analyse and evaluate in
this paper. Section III discusses some important properties
metrics may have and defines three forms of duals of metrics.
Section IV defines several variants of the previously defined
metrics, shows that some are equivalent and discusses how
contour plots are a useful tool for visualising metrics. Section
V discusses previous work on optimal metrics for single bug-
programs and show how several of the new metrics we propose
are optimal or nearly so for single bugs. Section VI discusses
the relationship between deterministic bugs and single bugs,
gives a new optimality result for deterministic bugs and shows
how some of the new metrics we propose are optimal or nearly
so for deterministic bugs. Section VII describes some empirical
experiments and their results, which validate our theoretical
results. Section VIII briefly reviews some additional related
work and Section IX concludes.

II. BACKGROUND — SPECTRAL FAULT LOCALIZATION

All spectral methods use a set of tests, each classified as
failed or passed; this can be represented as a binary vector,
where 1 indicates failed and 0 indicates passed. For statement
spectra [3], [4], [5], [6], [7], [8], [2], which we use here, we
gather data on whether each statement is executed or not for
each test. This can be represented as a binary matrix with a
row for each statement and a column for each test; 1 means
executed and 0 means not executed. For each statement, four
numbers are ultimately produced. They are the number of
passed/failed test cases in which the statement was/wasn’t
executed — 〈aef , aep, anf , anp〉, where the first part of the
subscript indicates whether the statement was executed (e) or
not (n) and the second indicates whether the test passed (p) or



TABLE I. STATEMENT SPECTRA WITH TESTS T1 . . . T5

T1 T2 T3 T4 T5 aef aep
S1 1 0 0 1 0 1 1
S2 1 1 0 1 0 2 1
S3 1 1 1 0 1 2 2

...
Res. 1 1 0 0 0 F = 2 P = 3

failed (f ). We use superscripts to indicate the statement number
where appropriate. For example, a1ep is the number of passed
tests that executed statement 1. We use F and P to denote the
total number of tests which fail and pass, respectively. Clearly,
anf = F − aef and anp = P − aep. It is sometimes convenient
to avoid explicit use of anf and anp; making F and P explicit
instead. Table I gives an example binary matrix of execution
data and binary vector containing the test results. This data
allows us to compute F, P and the aij values, i ∈ {n, e} and
j ∈ {p, f}.

Metrics, which are numeric functions, can be used to rank
the statements. Most commonly they are defined in terms of
the four aij values. Statements with the highest metric values
are considered the most likely to be buggy. We would expect
buggy statements to generally have relatively high aef values
and relatively low aep. In the example in Table I, Statement
2 (S2) is executed in both failed tests and only one passed
test, which is the minimum for all statements, and thus would
typically be ranked highest. The relative rank of statements 1
and 3 is not so clear cut, since statement 3 is executed in more
failed tests but also more passed tests. One way of viewing
the ranking is that rows of the matrix are ranked according
to how “similar” they are to the vector of test results, or how
similar the set of failed tests is to the set of tests which execute
the statement. Measures of similarity are not just important
in fault localization. They are central to classification and
machine learning, for example, and many different metrics
have been proposed in a wide range of application areas.
The fault localization performance of over 80 metrics gathered
from the literature is evaluated in [8]. Even the small selection
of metrics we use here have quite diverse origins, such as
classification of alpine plants [9], marine zoology [10] and
error detecting and correcting codes [11].

Programmers searching for a bug are expected to examine
statements, starting from the highest-ranked statement, until a
buggy statement is found. In reality, programmers are likely to
modify the ranking due to their own understanding of whether
the code is likely to be buggy, based on other information
such as static analysis, the history of software changes, et
cetera. Also, checking correctness generally cannot be done by
a single statement at a time, or even one basic block at a time.
Evaluation of different ranking methods generally ignores such
refinement and just depends on where the bug(s) appear in the
ranking.

Table II gives definitions of the established metrics used
here, all of which have been evaluated for fault localization
in [7] and their origins are discussed more there. We use a
small sample of “interesting” metrics to illustrate our points.
Three were originally proposed for spectral fault localization:
Tarantula [3], which is generally credited as being the first
spectral fault localization system, Ample2 [7] (based on a

metrics proposed in [12] and [4]) and Op [7]. Jaccard [9], the
oldest metric here, has been used in the Pinpoint system [13].
Ochiai [10], generally referred to as Cosine in data mining and
machine learning literature [14], was first evaluated for fault
localization in [4], as was a metric equivalent to Hamming
[11] (namely Rogers-Tanimoto) [7].

In most of the research on spectral fault localization there
is an underlying assumption that we are searching for “the
best” metric for this application area (based on evidence from
a particular set of benchmarks). Here we challenge this view.
Different metrics perform best in different situations — this
is to be expected. Based on our more theoretical insights, we
suggest how the current state of a software development project
could be used to choose one of a set of metrics.

III. PROPERTIES AND DUALS OF METRICS

Recall that metrics can be seen as measuring similarity of
the set of failed test cases and the set of test cases in which a
particular statement is executed. Several general properties of
set similarity (and related) measures have been investigated in
the context of data mining [15], [16], [14]; here we primarily
refer to the account of [14].

The first property clearly of interest is that the metrics
should be well-defined for all possible values of the aij. Many
metrics are undefined in some circumstances due to division
by (or logarithm of) zero. It seems reasonable to constrain the
problem to situations where there is at least one failed test case
(otherwise there is no fault apparent). We may also want to
ignore statements which are not executed in any tests and/or
assume there is at least one passed test and/or tweek some
definitions.

The second property is that for a fixed number of passed
and failed tests, metrics strictly increase in aef and strictly
decrease in aep — this is called monotone in [14] and strictly
rational in [2]. Numerous metrics, including Tarantula, Jaccard
and Ochiai, are not monotone due to their behaviour when
aef = 0; they have a constant value of zero rather than
decreasing in aep.

The last properties of interest are forms of symmetry. Let
E be the set of test cases which execute a given statement and
F be the set of test cases which fail. Saying E is similar to
F is like saying saying the complement of E (the set of test
cases which do not execute the statement) is dis-similar to F,
or E is dis-similar to the complement of F (the set of passed
test cases), or saying the complement of E is similar to the
complement of F. Equivalently, we can swap ones and zeros
in either the encoding of statement execution, test case failure,
or both (see Table I). For ranking purposes, dis-similarity can
be measured by simply negating a similarity measure. We
thus define three forms of duals of metrics corresponding to
complementing E, F and both, respectively:

Definition 1 (E-dual): The E-dual of a metric M, DE(M),
is defined as

DE(M)(aef , aep, anf , anp) = −M(anf , anp, aef , aep)

Definition 2 (F-dual): The F-dual of a metric M, DF(M),
is defined as

DF(M)(aef , aep, anf , anp) = −M(aep, aef , anp, anf )



TABLE II. DEFINITIONS OF RANKING METRICS USED PREVIOUSLY

Name Formula Name Formula Name Formula

Tarantula
aef

aef +anf
aef

aef +anf
+

aep
aep+anp

Jaccard aef

aef +anf +aep
Ochiai aef√

(aef +anf )(aef +aep)

Op aef − aep

aep+anp+1
Ample2 aef

aef +anf
− aep

aep+anp
Hamming aef + anp

Definition 3 (EF-dual): The EF-dual of a metric M,
DEF(M), is defined as

DEF(M)(aef , aep, anf , anp) = M(anp, anf , aep, aef )

Metrics which are their own EF-duals are called “inversion
invariant” in [14] and the term “antisymmetry for normalised
measures” is used to describe metrics which are their own E-
duals and F-duals (though these two forms of symmetry are
generally distinct and when metrics are only used for ranking
purposes is is not necessary for them to be “normalised” to
a particular range). Although these forms of symmetry may
be appealing when viewing set similarity from a philosophical
viewpoint, in practice, most commonly used similarity metrics
do not exhibit these forms of symmetry. However, the duals
we have defined, which are the essence of these forms of
symmetry, can be useful for spectral fault localization (and
other applications).

IV. NEW METRICS FROM OLD

Based on the properties discussed above, we present
slightly modified version of the previously defined metrics.
Many other metrics from the literature can be modified in
similar ways. Table III contains modified definitions of those
in Table II which are well-defined and monotone assuming at
least one passed and failed test. We allow statements which
are not executed in any test, because the E-dual notion is that
the statement is executed in all tests, which is often the case
and such statements must be considered for fault localization.
Tarantula results in the same ranking as aef

aep
(if we can obtain

metric g from f by applying a monotone function, f and g
are equivalent for ranking purposes)[7]. By adding a small
constant ε to the numerator and denominator we can ensure
is it monotone and defined in all relevant cases. Similary for
Jaccard and Ochiai/Cosine. A more conservative modification
is to add ε only when aef (or aep) is zero, but here we
opt for simplicity. There seem no apparent good reasons to
use the original versions of these metrics in preference to
monotone variants. N gives the same ranking as Op but has
more desirable properties with respect to the duals. Ample2
and A are identical, as are Hamming and H; they are included
in the table for completeness. In theory we can take the limit
of these formulas as ε approaches zero, or, for a given F and
P, choose some ε such that no smaller positive value gives a
different ranking for all possible aef and aep values. In practice
we can just use a small fixed constant such as 10−6, which is
what we use to obtain our experimental results.

As well as these definitions, we can use the three forms of
duals of each of these definitions. However, in some cases we
obtain metrics which are equivalent for ranking purposes.

Proposition 1: DE(N) and N are equivalent, DE(A),
DF(A), DEF(A), and A are equivalent, DE(H), DF(H),
DEF(H), and H are equivalent, and DF(T) and T are equiv-
alent,

Rather than give a formal proof of these equivalences, we
give a graphical illustration of these metrics and their duals.
It is convenient to view metrics as contour plots, showing
equal metric values as aef and aep vary from zero to F and
P, respectively. Figure 1 shows plots of contours of these
metrics, with rectangles showing the range of possible aef and
aep values; all contours are linear for these metrics. For J,
all contour lines converge where aef = −ε and aep = −F
(we include negative aep values in this plot to show the
point of convergence). For T, all contour lines converge where
aef = aep = −ε. For N, A and H, all contour lines are parallel.
For N the gradient is ε (exaggerated in the diagram), for A the
gradient is F/P and for H the gradient is 1.

Several insights can be gained from plotting contours of
metrics in this way. First, metrics which are equivalent for
ranking purposes have the same set of contours. Equivalent
metrics can be identified immediately, whereas recognising
equivalence by comparing formulas (such as that for Tarantula
and aef

aep
) is often far from obvious. Second, monotonicity

simply means that all countours have a positive (and finite)
gradient. Third, the relative importance of execution in passed
versus failed tests is made clear from the gradient of the
contours. A low gradient means aef is more important than
aep for determining the value of the metric whereas a high
gradient means the opposite. Finally, the contours allow the
forms of symmetry to be easily identified, modulo equivalence
for ranking.

Plotting contours of the E-dual of a metric in the same way
as Figure 1 results in a 180◦ rotation, since the metric at point
(aef , aep) has the negated value of the E-dual at point (F −
aef ,P− aep). Metrics N, A, H, and all other metric for which
the contours are parallel lines have this form of symmetry in
their contour plots. Plotting the F-dual results in a reflection
in the line aef = aep with F and P also swapped. The metric
at point (aef , aep) has the negated value of the F-dual at point
(aep, aef ). Metrics A, H and T have form of symmetry, so A
and H are also equivalent to their EF-duals.

V. OPTIMALITY FOR SINGLE BUG PROGRAMS

In [7], optimality of metrics is introduced and “single bug”
programs are the focus. In order to establish any technical
results, we must be clear as to what constitutes a bug, so it is
clear if a program has a single bug. In [7] a bug is defined to be
“a statement that, when executed, has unintended behaviour”.
Note that a programmer may make a single mistake, such as



TABLE III. MODIFIED DEFINITIONS OF RANKING METRICS

Name Formula Name Formula Name Formula
T

aef +ε

aep+ε
J

aef +ε

aef +anf +aep
C

aef +ε√
(aef +anf )(aef +aep+ε)

N aef − εaep A
aef

aef +anf
− aep

aep+anp
H aef + anp

aef

aep(−F,−ε) J

aef

aep(−ε,−ε) T

aef

aepN

aef

aepA

aef

aepH

Fig. 1. Contour plots for several measures

an incorrect #define directive, which leads to multiple bugs
according to this definition.

In order to understand the fault localization problem better,
a very simple model program, with just two if-then-else
statements and a single bug is proposed in [7], along with a
very simple way of measuring performance of a metric with a
given set of test cases, based on whether the bug is ranked top,
or equal top. A set of test cases corresponds to a multiset of
execution paths through the program. Performance depends on
the multiset, but overall performance for K tests is determined
by the average performance over all possible multisets of K
execution paths. Using a combinatorial argument, a class of
metrics, including Op, is shown to be “optimal”, meaning its
overall performance is at least as good as any other metric, for
any number of tests. The definition of the class of metrics is
as follows, where it is assumed F and P are fixed:

Definition 4 (Single bug optimality [7]): A metric M is
single bug optimal if

1) when aef < F, the value returned is always less than
any value returned when aef = F, and

2) when aef = F, M is strictly decreasing in aep.

The first condition is motivated by the fact that for single
bug programs, the bug must be executed in all failed tests.
Since aef = F for the bug, statements for which aef < F are
best ranked strictly lower. The second condition is motivated
by the same intuition behind monotonicity. This optimality
result was extended further in [2], using a more realistic
performance measure (a minor variation of several others in
the literature) and making the result independent of the set of
test cases. The result required restricting attention to monotone
(strictly rational) metrics but is was argued that this restriction
is not of practical importance. The definition of performance
and the optimality proposition are as follows:

Definition 5 (rank cost [2]): Given a ranking of S state-
ments, the rank cost is

GT + EQ/2
S

where GT is the number of correct statements ranked strictly
higher than all bugs and EQ is the number of correct statements
ranked equal to the highest ranked bug.

Proposition 2 ([2]): Given any program with a single bug,
any set of test cases and any single bug optimal metric M used
to rank the statements, the rank cost using M is no more than
the rank cost using any other strictly rational metric.

We now show that duals of several previously defined
metrics, when tweeked to ensure monotonicity and well-
definedness, are single bug optimal and thus lead to maximal
performance for localizing single bugs.

Proposition 3: DE(J) and DE(C) are both single bug
optimal.

Proof: The formulas for these duals are − F−aef +ε
F+P−aep

and

− F−aef +ε√
F(F−aef +P−aep+ε)

, respectively. For aef = F the numerators

are ε and the denonimators are always much larger, so the
result is a very small negative number, whereas the result is
a larger negative number when aef < F. Also, when aef = F
the denonimators, and hence the overall value of the (negated)
fraction decrease in aep.

Note that the E-duals of the original (non-monotone)
versions of these metrics are not single bug optimal, since
when aef = F the numerators are zero, hence the overall value
does not decrease in aep. Ochiai/Cosine performs quite well for
fault localization (it is the best of the metrics evaluated in [4])
and Jaccard also performs reasonably well. It is interesting
that a slight modification to ensure monotonicity and taking
the E-dual results in optimal metrics for the single bug case.



Futhermore, this applies to numerous other metrics — of the
large number of metrics evaluated in [8], aef divided by some
other formula features prominently and very similar methods
can be used to obtain optimal single bug metrics.

Proposition 4: DE(T) is single bug optimal if statements
which are executed in all tests are ignored.

Proof: The dual is F−aef +ε
P−aep+ε . The same reasoning as the

previous proof applies, except when aef = F and aep = P, that
is, the statement is executed in all tests.

There is only a single case which is not ranked optimally:
DE(T) may rank a statement which is executed in all tests
below some statements which are not executed in all failed
tests. However, it is a particularly common case in practice,
including “initialization” code, for example. In our empirical
experiments (see Section VII) DE(T) gives significantly lower
performance than the optimal single bug metrics. However,
our experiments suggest that DE(T) still performs much better
than Tarantula. Also, statements which are executed in all test
cases could be treated specially in the bug localization regime
rather than just relying on a metric to rank them amongst the
other statements.

VI. SINGLE BUGS AND DETERMINISTIC BUGS

Deterministic bugs are those which cause test case failure
whenever they are executed [17] (note that our use of the term
“deterministic” here only relates to this definition; it is not
about whether the behaviour of a program is completely deter-
mined by the test case). The relationship between performance
of spectral fault localization and how consistently bugs lead to
test case failure has been studied [4], [8]. The term “error
detection accuracy”, qe, is used to describe bug consistency in
[4], defined by qe = aef /(aef + aep). Although deterministic
bugs (where qe = 1) have been noted in the literature, this
class of bugs has attracted relatively little attention in fault
localization research. In part, this is due to the fact that they
are often elimination early in software development. The vast
majority of fault localization effort goes into finding bugs
which are not deterministic, so execution of them results in
test case failure in only some cases (and quite often a very
small proportion of cases). The average qe value for bugs in the
Siemens test suite (see Section VII), for example, is only 0.12
[8]. There are no established benchmark sets of deterministic
bug programs.

In contrast, single bug programs have attracted far more
interest and most of the larger sets of benchmark programs
have at least a strong bias towards single bugs. Although most
fault localization effort is also directed towards programs with
multiple bugs, we can at least hope to be hunting down the
last bug (or at least the last bug exposed by our test suite) at
some stage, and this hunt can take considerable effort. Here
we show an interesting relationship between programs with a
single bug and programs with only deterministic bugs. This
leads to an optimality result for deterministic bug programs
analogous to that for single bug programs.

For the bug in a single bug program aef = F and
(equivalently) anf = 0, as mentioned earlier. For deterministic
bugs, aep = 0 (and anp = P). Thus there is a form of EF-
duality relating these two cases. Optimal single bug metrics

have a contour with a small positive gradient close to the line
aef = F. By reflection and rotation we obtain a contour with a
very high gradient close to the line aep = 0. We can define the
class of deterministic bug optimal metrics based intuitively on
the EF-dual of the class of single bug optimal metrics:

Definition 6 (Deterministic bug optimality): A metric M
is deterministic bug optimal if

1) when aep > 0, the value returned is always less than
any value returned when aep = 0, and

2) when aep = 0, M is strictly increasing in aef .

This class of metrics in indeed optimal for programs with
only deterministic bug, in that no other monotone metric can
result in a smaller rank cost:

Proposition 5: Given any program with only deterministic
bugs, any set of test cases and any deterministic bug optimal
metric M used to rank the statements, the rank cost using M is
no more than the rank cost using any other monotone metric.

Proof: Let O be a deterministic bug optimal metric, b be
a statement which is ranked (equal) top by O and M be some
other monotone metric. The rank cost depends only on the
top-most ranked bug(s), so it is sufficient to show that

1) no (correct) statement s which is ranked higher than
b by O is ranked lower than b by M, and

2) no buggy statement b′ which is ranked lower than b
by O is ranked higher than b by M.

For 1), we know ab
ep = 0 (since b is a deterministic bug) and so

as
ep = 0 (since s is ranked higher by O, which is deterministic

bug optimal), so as
ef > ab

ef (similarly), so s is ranked higher
than b by M (since M is monotone). For 2), ab′

ep = 0 (since b′ is
a deterministic bug), so ab′

ef < ab
ef (since b is ranked higher by

O, which is deterministic bug optimal), so b is ranked higher
by M (since M is monotone).

Note that in this proof we rely on the performance measure
being based only on where the top-most bug is ranked, whereas
no such assumption is necessary for the proof of single bug
optinality (since there is only a single bug in the ranking).
Most proposed performance measures have this characteristic,
the reasoning being that after a bug is located, it can be
corrected and the tests re-run to find any further bugs. In
practice, re-running all the tests may be expensive and parallel
search for multiple bugs may be desirable. However, even
for performance measures which are based on the ranking of
multiple bugs, it seems that deterministic bug optimal metrics
are likely to perform best for this class of bugs.

The EF-duals of the new single bug optimal metrics
discussed previously are deterministic bug optimal:

Proposition 6: DF(N) (and, equivalently, DEF(N)),
DF(J), and DF(C) are all deterministic bug optimal.

Proof: DF(N) is defined as −(aep − εaef ) and the proof
for this and the other metrics is straightforward.

Note that DF(Op) is not deterministic bug optimal. It is
necessary that the coefficient for aep is “sufficiently small”,
which ε is but the coefficient used in Op may not be (depending
on the F and P values).



Proposition 7: T is deterministic bug optimal if statements
which are executed in no tests are ignored.

Proof: Straightforward.

Although T is not deterministic bug optimal in the strict
sense, it does give optimal rank cost. Since we assume there
is at least one failed test, there must be at least one bug
which is executed in some test and the rank cost depends
only on the top-most ranked bug. For performance measures
which depend on the ranking of all bugs (or if we drop the
assumption that there is a failed test), T may perform less well
than deterministic bug optimal metrics. It may rank a statement
which is never executed below some statements which are used
in a passed test (which is sub-optimal for deterministic bugs).

Based on our optimality results for deterministic bugs and
single bugs, and the discussion on when these bug classes are
most important during software development, we conjecture
the following:

Conjecture 1: In early stages of software development,
metrics that have contours with relatively high gradients are
preferable, whereas in late stages of software development,
metrics that have contours with relatively low gradients are
preferable.

Early in software development, when new code is written
and unit tested, for example, deterministic bugs are relatively
likely and multiple bugs are common. Metrics which are
deterministic bug optimal (or similar) are thus likely to perform
relatively well, whereas metrics which are single bug optimal
(or similar) are likely to perform relatively poorly. Late in
development, when regression testing of a whole system is
performed, for example, bugs tend to be much less consistent
and there are likely to be fewer bugs. Metrics which are
similar to single bug optimal metrics are thus likely to perform
relatively well. In the past, researchers have tended to focus
on finding “the best” metric to be used for spectral fault
localization. Here we are suggesting there is no single best
metric, but by understanding certain properties of metrics
and the current state of a software development project, a
good choice of metric can be made. Unfortunately, detailed
empirical investigation of this conjecture is beyond our current
resources. We have, however, performed some experiments to
validate our theoretical contributions.

VII. EXPERIMENTAL RESULTS

To validate our theoretical results we have performed some
simple model-based experiments in the style of [7]. The simple
deterministic model program of [7] was used. This has two if-
the-else constructs in sequence and each of the four branches
is an instrumented statement, executed in half the tests, on
average. One of the statements is buggy and leads to test case
failure half the time it is executed, on average. In addition,
we used a model with three if-the-else constructs in sequence
and each of the six branches is an instrumented statement,
executed in half the tests, on average. Two statements, in
different if-the-else constructs, are deterministic bugs. Table IV
gives the average rank cost (as a percentage) for each model
and each metric, using 20 and 50 test cases. For 20 test cases,
performance was averaged over every possible set of test cases
(every multiset of 20 execution paths). For 50 test cases we

TABLE IV. EXPERIMENTAL RESULTS USING SIMPLE MODELS

Single bug Det. bug
Num. Tests 20 50 20 50
N 3.01 1.47 2.85 2.79
DE(C) 3.01 1.47 2.36 1.98
DE(J) 3.01 1.47 2.64 2.33
DE(Jaccard) 5.30 2.78 2.76 2.35
DE(T) 3.07 1.48 1.49 1.06
C 3.79 2.63 1.71 1.32
J 4.28 3.27 1.77 1.43
Jaccard 4.22 3.25 1.77 1.43
A 4.33 3.04 0.87 0.49
T 6.14 4.92 0.76 0.35
Tarantula 6.12 4.90 3.50 1.85
H 9.98 8.85 1.47 1.16
DEF(C) 12.27 10.69 0.88 0.52
DEF(J) 13.69 12.33 0.94 0.61
DEF(Jaccard) 13.76 12.33 0.93 0.61
DF(C) 13.72 12.32 0.76 0.35
DF(J) 14.93 13.71 0.76 0.35
DF(Jaccard) 15.07 13.72 3.54 1.85
DF(N) 17.77 17.43 0.76 0.35

used ten million randomly selected multisets. Test sets that
lead to no failed tests or no passed tests were ignored. As
well as the new metrics, the table includes the original version
of Jaccard and its duals and the original version of Tarantula,
modified to avoid division by zero (x/0 is considered to be 0.5
if x = 0 and 9999 otherwise).

As expected, N, DE(J) and DE(C) give equal-best perfor-
mance for the single bug model. DE(T) gives somewhat worse
performance for the smaller number of tests but for the larger
number of tests the divergence from optimal performance is
very small. The reason for this is that (for this model and
a uniform distribution of test cases), with a reasonably large
number of test cases it is very rare that any statement is
executed in all test cases. Also as expected, DF(N), DF(J)
and DF(C) perform equal best for the deterministic model.
T also gives optimal performance for this model since the
performance measure depends only on the top-most ranked
bug and there is at least one failed test (see the discussion
following Proposition 4).

Comparison of J and Jaccard, and their duals, allows us
to see the effect of adding ε to achieve monotonicity. For
the single bug optimal version, DE(J), and deterministic bug
optimal version, DF(J), monotonicity significantly improves
the performance for single bug and deterministic bug models,
respectively. In other cases the performance differences are
small, though (perhaps surprisingly) Jaccard performs slightly
better than J for the single bug model. This is because adding ε
increases the gradient of all the contours. Although the increase
is tiny, the effect on performance is noticable because of ties in
the ranking. There are cases where a bug and a non-bug, with
lower aef but higher aep, are tied in the ranking using Jaccard
but using J the non-bug is always ranked higher. If ε was added
only when aef = 0 we would not see this effect. Similarly,
Tarantula performs slightly better than T for this model (some
contours have a higher gradient with T), though significantly
worse for the deterministic bug model, as expected. DE(T)
performs significantly better than Tarantula for both models.

We also performed empirical evaluation using a collection
of small C programs with single bugs: the Siemens Test Suite
(STS), from the Software Information Repository [18], plus
several small Unix utilities, from [19]. These, particularly STS,



TABLE V. DESCRIPTION OF SIEMENS + UNIX BENCHMARKS

Program versions LOC Tests
tcas 37 173 1608
schedule 8 410 2650
schedule2 9 307 2710
print tok 6 563 4130
print tok2 10 508 4115
tot info 23 406 1052
replace 29 563 5542
Col 28 308 156
Cal 18 202 162
Uniq 14 143 431
Spline 13 338 700
Checkeq 18 102 332
Tr 11 137 870

TABLE VI. EXPERIMENTAL RESULTS USING STS AND UNIX

Metric STS Unix Combined
N 14.78 19.37 16.87
DE(C) 14.78 19.37 16.87
DE(J) 14.78 19.37 16.87
DE(Jaccard) 27.46 30.90 29.02
DE(T) 16.85 21.52 18.98
C 19.26 22.28 20.63
J 22.57 22.75 22.65
Jaccard 22.57 22.75 22.65
A 21.30 25.23 23.09
T 23.22 28.17 25.47
Tarantula 23.22 31.49 26.98
H 43.57 29.37 37.10
DEF(C) 43.87 32.51 38.70
DEF(J) 44.11 32.93 39.02
DEF(Jaccard) 44.12 32.93 39.02
DF(C) 44.04 34.92 39.88
DF(J) 44.35 35.23 40.20
DF(Jaccard) 44.35 38.54 41.71
DF(N) 44.74 36.54 41.00

are widely used for evaluating spectral ranking methods. Table
V gives the names of the programs (the first seven are from
STS), and the numbers of versions, lines of code (LOC) and
test cases. A small number of programs in the repository were
not used because there was more than one bug according to
our definition (for example, a #define was incorrect) or we
could not extract programs spectra. We used the gcov tool,
part of the gcc compiler suite (version 4.4.5 on Ubuntu), and
it cannot extract spectra from programs with runtime errors.

Table VI gives the results for these benchmarks. In com-
puting the rank cost, lines of code which were not executed
in any tests were ignored. The results are very similar to
those from the single bug model. As with this model, N,
DE(J) and DE(C) give equal-best performance. DE(T) gives
significantly worse performance (though still better than the
other metrics), due to bugs which are executed in all test
cases. The expected performance of DE(T) for such cases is
substantially lower than that of the optimal metrics, leading to
the gap in overall performance for the benchmark set. DE(T)
still performs much better than T and Tarantula. Again, DE(J)
performs significantly better than DE(Jaccard). In other cases
the effect of ε is quite small. As expected, the deterministic bug
optimal metrics (along with some others) perform very poorly,
particularly for Siemens, with its low average bug consistency.
Spectral fault localization performance for the Unix benchmark
is not affected so much by bug consistency, partly due to the
large number of ties in the ranking (there are far fewer test
cases than STS and they were not developed with the same
technique) [8]. This explains why the variation in performance
between the different metrics is less for Unix than for STS.

VIII. OTHER RELATED WORK

In Section II we referred to several papers which introduced
new metrics for spectral fault localization, or evaluated metrics
which had previously been introduced for other domains. Here
we briefly review other related work. There are a couple of
approaches which post-process the ranking produced which are
equivalent to adjusting the metric. The post-ranking method of
[6] essentially drops any statement which is not executed in
any failed test to the bottom of the ranking. That of [20] ranks
primarily on the aef value and secondarily on the original rank.
Thus if the original ranking is done with a monotone metric,
the resulting ranking is single bug optimal. An alternative way
of ensuring single bug optimality is to adapt metric definitions
so the case when aef = F is treated specially [2].

Other variations on the statement spectra ranking method
described in this paper attempt to use additional and/or dif-
ferent information from the program executions. Execution
frequency counts for statements, rather than binary numbers,
are used in [21] to weight the different aij values and in [22]
aggregates of the columns of the matrix are used to adjust
the weights of different failed tests. The RAPID system [23]
uses the Tarantula metric but uses branch spectra rather than
statement spectra.

The CBI [17] and SOBER [24] systems use predicate
spectra: predicates such as conditions of if-then-else statements
are instrumented and data is gathered on whether control
flow ever reaches that point and, if it does, whether the
predicate is ever true. CBI uses sampling to reduce overheads
but aggregates the data so there are four numbers for each
predicate, which are ranked in a similar way to how statements
are ranked using statement spectra. SOBER uses frequency
counts and a different form of statistical ranking method. The
Holmes system [25] uses path spectra: data is collected on
which acyclic paths through single functions are executed or
“reached ”, meaning the first statement is executed but not
the whole path, and the paths are ranked in a similar way
to predicate ranking in CBI. Statement and predicate spectra
are compared in [26], and it is shown that the aggregate
data used in predicate spectra methods is more expressive
than that used for statements spectra and modest gains in
theoretical performance are demonstrated. The data collected
for path spectra contains even more information and thus could
potentially be used to improve performance further.

IX. CONCLUSION

Spectra-based techniques are a promising approach to soft-
ware fault localization. Here we have used one of the simplest
and most popular variants: ranking statements according to
some metric, a function of the numbers of passed and failed
tests in which the statement is/isn’t executed. Metrics can
be viewed as a way to measure similarity of sets, a generic
problem applicable to many areas of science. For this reason,
a very large number of metrics have been proposed over many
years and general properties of such metrics have been studied.
One important property is that metrics should be monotone.
For example, if we fix the number of passed and failed tests,
the suspiciousness of a statement should increase in the number
of failed tests it is executed in and decrease in the number
of passed tests it is executed in. Many set similarity metrics



are not monotone but can be made monotone with a small
adjustment, such as adding a small constant to the numerator
of the metric definition.

Set similarity is normally applied to spectral debugging by
considering the similarity of the set of failed tests and the set
of tests each statement is executed in. However, we can equally
consider the similarity of the complements of these two sets, or
the dis-similarity of one set and the complement of the other.
Thus there are three variant ways of applying set similarity.
Equivalently, we can define three “duals” of any given set
similarity measure. For several existing similarity metrics, if
we modifiy the definitons slightly to ensure monotonicity, then
a dual of the metric is optimal for single bug programs. We
have also shown that a form of duality exists between single
bug programs and programs which only contain “determi-
nistic” bugs, and defined a class of metrics which is proven
to be optimal for localizing fault in such programs. These two
classes of programs can be seen as the two extreme cases for
spectral fault localization. Because deterministic bugs tend to
be more prevalent in early stages of software development and
single bugs occur late software development, we conjecture
that metrics should be chosen based on the stage of software
development, rather than aiming for a single “best” metric to
be used in all situations.

REFERENCES

[1] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
in Proceedings of the 6th European Conference held jointly with the 5th
ACM SIGSOFT. New York, USA: Springer-Verlag New York, Inc.
New York, 1997, pp. 432–449.

[2] L. Naish, H. J. Lee, and R. Kotagiri, “Spectral debugging: How much
better can we do?” in 35th Australasian Computer Science Conference
(ACSC 2012), CRPIT Vol. 122. CRPIT, 2012.

[3] J. Jones and M. Harrold, “Empirical evaluation of the Tarantula au-
tomatic fault-localization technique,” Proceedings of the 20th ASE, pp.
273–282, 2005.

[4] R. Abreu, P. Zoeteweij, and A. van Gemund, “An evaluation of
similarity coefficients for software fault localization,” PRDC’06, pp.
39–46, 2006.

[5] W. E. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective Fault Localization
using Code Coverage,” Proceedings of the 31st Annual IEEE Computer
Software and Applications Conference, pp. 449–456, 2007.

[6] X. Xie, T. Y. Chen, and B. Xu, “Isolating Suspiciousness from
Spectrum-Based Fault Localization Techniques,” in 10th International
Conference on Quality Software , 2010. QSIC 2010, 2010.

[7] L. Naish, H. J. Lee, and R. Kotagiri, “A model for spectra-based
software diagnosis,” ACM Transactions on software engineering and
methodology (TOSEM), vol. 20, no. 3, August 2011.

[8] H. J. Lee, “Software Debugging Using Program Spectra,” Ph.D. disser-
tation, University of Melbourne, 2011.

[9] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des Alpes et des Jura,” Bull. Soc. Vaudoise Sci. Nat, vol. 37, pp. 547–
579, 1901.

[10] A. Ochiai, “Zoogeographic studies on the soleoid fishes found in Japan
and its neighbouring regions,” Bull. Jpn. Soc. Sci. Fish, vol. 22, pp.
526–530, 1957.

[11] R. Hamming, “Error detecting and error correcting codes,” Bell System
Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[12] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization
with AMPLE,” in Proceedings of the Sixth International Symposium on
Automated Analysis-driven Debugging. ACM, 2005, pp. 99–104.

[13] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” Proceedings
of the DSN, pp. 595–604, 2002.

[14] P.-N. Tan, V. Kumar, and J. Srivastava, “Selecting the right
interestingness measure for association patterns,” in Proceedings
of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’02. New
York, NY, USA: ACM, 2002, pp. 32–41. [Online]. Available:
http://doi.acm.org/10.1145/775047.775053

[15] L. Geng and H. J. Hamilton, “Interestingness measures for data
mining: A survey,” ACM Comput. Surv., vol. 38, no. 3, Sep. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1132960.1132963

[16] P. Lenca, P. Meyer, B. Vaillant, and S. Lallich, “On selecting inter-
estingness measures for association rules: User oriented description
and multiple criteria decision aid,” European Journal of Operational
Research, vol. 184, no. 2, pp. 610–626, 2008.

[17] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable
statistical bug isolation,” Proceedings of the 2005 ACM SIGPLAN,
vol. 40, no. 6, pp. 15–26, 2005.

[18] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled Experi-
mentation with Testing Techniques: An Infrastructure and its Potential
Impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[19] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect of Test Set
Minimization on Fault Detection Effectiveness,” Software-Practice and
Experience, vol. 28, no. 4, pp. 347–369, 1998.

[20] V. Debroy, W. Wong, X. Xu, and B. Choi, “A Grouping-Based Strategy
to Improve the Effectiveness of Fault Localization Techniques,” in 10th
International Conference on Quality Software , 2010. QSIC 2010, 2010.

[21] H. J. Lee, L. Naish, and R. Kotagiri, “Effective Software Bug Local-
ization Using Spectral Frequency Weighting Function,” in Proceedings
of the 2010 34th Annual IEEE Computer Software and Applications
Conference. IEEE Computer Society, 2010, pp. 218–227.

[22] L. Naish, H. J. Lee, and R. Kotagiri, “Spectral debugging with weights
and incremental ranking,” in 16th Asia-Pacific Software Engineering
Conference, APSEC 2009. IEEE, December 2009, pp. 168–175.

[23] H. Hsu, J. Jones, and A. Orso, “RAPID: Identifying bug signatures to
support debugging activities,” in 23rd IEEE/ACM International Confer-
ence on Automated Software Enginering, 2008. ASE 2008, 2008, pp.
439–442.

[24] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 5, pp. 286–295, 2005.

[25] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani, “HOLMES:
Effective statistical debugging via efficient path profiling,” in Pro-
ceedings of the 2009 IEEE 31st International Conference on Software
Engineering. IEEE Computer Society, 2009, pp. 34–44.

[26] L. Naish, H. J. Lee, and R. Kotagiri, “Statements versus predicates
in spectral bug localization,” in Proceedings of the 2010 Asia Pacific
Software Engineering Conference. IEEE, December 2010, pp. 375–
384.


