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Contribution

Primarily theoretical:

Literature on set similarity measures discusses various forms of symmetry
and other properties

We apply these ideas to obtain new similarity measures for fault
localization and gain a deeper understanding of the problem
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New metrics from old

Single bugs and deterministic bugs

Empirical validation of theory

A conjecture concerning choice of similarity metrics

Conclusion
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Spectra-Based Fault Localization

Execute the program multiple times using a test suite where we can tell if
each result is correct or not, gathering data about each execution

For each statement/. . . , estimate how likely it is to be buggy based on the
data gathered

Rank the statements accordingly, then check the code manually, starting
with the highest ranked statement until the bug is found (or we give up)

Cost measure: given a ranking of S statements, the rank cost is

GT + EQ/2

S

where GT is the number of correct statements ranked strictly higher than
all bugs and EQ is the number of correct statements ranked equal to the
highest ranked bug
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Statement spectra

Collect data on which statements are executed for each test

We count

The total number of failed tests, F ,

The total number of passed tests, P,

and for each statement Si , the number of

failed tests in which it was executed, aief ,

passed tests in which it was executed, aiep.

failed tests in which it was not executed, ainf , and

passed tests in which it was not executed, ainp.

(the last two could be implicit)
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Statement spectra example

The raw data is a binary matrix (1 means the statement was executed in
the test) and a binary vector (1 means the test failed)

We compute F , P and the aef and aep for each statement, eg

T1 T2 T3 T4 T5 aef aep
S1 1 0 0 1 0 1 1
S2 1 1 0 1 0 2 1
S3 1 1 1 0 1 2 2

...
Res. 1 1 0 0 0 F = 2 P = 3

To rank statements, measure “similarity” of matrix rows and result vector
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Some similarity metrics used for ranking

Name Formula Name Formula

Tarantula
aef

aef +anf
aef

aef +anf
+

aep
aep+anp

Jaccard aef
aef +anf +aep

Ochiai aef√
(aef +anf )(aef +aep)

Hamming aef + anp

Op aef − aep
aep+anp+1 Ample2 aef

aef +anf
− aep

aep+anp

Op was proven optimal for a model single-bug program

A metric M is single bug optimal if, when aef = F ,

1 the value returned is always greater than any value returned when
aef < F , and

2 M is strictly decreasing in aep
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Two properties metrics should have

1) Well-definedness for all possible aij values

2) Monotonicity: strictly increasing in aef and decreasing in aep, for a fixed
F and P

By adding a tiny constant ε in various places we can tweak the metrics to
ensure well-definedness and monotonicity (Tarantula is equivalent to aef

aep
)

Name Formula Name Formula

T aef +ε
aep+ε J aef +ε

aef +anf +aep

C aef +ε√
(aef +anf )(aef +aep+ε)

H aef + anp

N aef − εaep A aef
aef +anf

− aep
aep+anp
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A graphical view

Given fixed F and P, a similarity measure can be viewed as a surface over
the domain of aef and aep values

M()

aep

aef

(0, 0)

(0,P)

(F ,P)
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More properties metrics may have: symmetries

Suppose E is the set of tests which execute a given statement and F is the
set of tests which fail

Saying E is similar to F is like saying the complement of E is dis-similar to
F , or E is dis-similar to the complement of F , or the complement of E is
similar to the complement of F
We define the E-dual, F-dual and EF-dual of a metric M:

DE (M)(aef , aep, anf , anp) = −M(anf , anp, aef , aep)

DF (M)(aef , aep, anf , anp) = −M(aep, aef , anp, anf )

DEF (M)(aef , aep, anf , anp) = M(anp, anf , aep, aef )

Metrics are equivalent to zero, one or all three of their duals
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Symmetries and contour plots

DE (N) and N are equivalent, DE (A), DF (A), DEF (A), and A are
equivalent, DE (H), DF (H), DEF (H), and H are equivalent, and DF (T)
and T are equivalent

aef

aep(−F ,−ε) J

aef

aep(−ε,−ε) T

aef

aepN

aef

aepA

aef

aepH
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Optimality for single bugs and deterministic bugs

DE (J) and DE (C) are both single bug optimal

DE (T) is single bug optimal if statements which are executed in all tests
are ignored

For a single bug, aef = F (and anf = 0)

Deterministic bugs cause failure whenever they are executed: aep = 0 (and
anp = P) — the EF-dual of the single bug case

A metric M is deterministic bug optimal if, when aep = 0, the value
returned is always greater than any value returned when aep > 0, and M is
strictly increasing in aef

DF (N), DEF (N), DF (J), and DF (C) are deterministic bug optimal, as is
T if statements which are executed in no tests are ignored
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Empirical validation of theory (Siemens + Unix)

Metric STS Unix Combined

N 14.78 19.37 16.87
DE (C) 14.78 19.37 16.87
DE (J) 14.78 19.37 16.87
DE (Jaccard) 27.46 30.90 29.02
DE (T) 16.85 21.52 18.98
C 19.26 22.28 20.63
J 22.57 22.75 22.65
Jaccard 22.57 22.75 22.65
A 21.30 25.23 23.09
T 23.22 28.17 25.47
Tarantula 23.22 31.49 26.98
H 43.57 29.37 37.10
DEF (C) 43.87 32.51 38.70
DEF (J) 44.11 32.93 39.02
DEF (Jaccard) 44.12 32.93 39.02
DF (C) 44.04 34.92 39.88
DF (J) 44.35 35.23 40.20
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Empirical validation of theory (model results)

Single bug Det. bug
Num. Tests 20 50 20 50
N 3.01 1.47 2.85 2.79
DE (J) 3.01 1.47 2.64 2.33
DE (Jaccard) 5.30 2.78 2.76 2.35
DE (T) 3.07 1.48 1.49 1.06
J 4.28 3.27 1.77 1.43
Jaccard 4.22 3.25 1.77 1.43
A 4.33 3.04 0.87 0.49
T 6.14 4.92 0.76 0.35
Tarantula 6.12 4.90 3.50 1.85
H 9.98 8.85 1.47 1.16
DEF (J) 13.69 12.33 0.94 0.61
DEF (Jaccard) 13.76 12.33 0.93 0.61
DF (J) 14.93 13.71 0.76 0.35
DF (Jaccard) 15.07 13.72 3.54 1.85
DF (N) 17.77 17.43 0.76 0.35
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How can we choose a good similarity metric?

Conjecture: In early stages of software development, metrics that have
contours with relatively high gradients are preferable, whereas in late
stages of software development, metrics that have contours with relatively
low gradients are preferable

In early stages, multiple bugs are expected and deterministic bugs are
relatively likely. In late stages we have (hopefully) eliminated deterministic
bugs and are converging towards the single bug case
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Conclusions

Instead of looking for a single “best” similarity metric for fault localization,
we should choose different metrics based on the stage of software
development

Sometimes theoretical nit picking can have significant practical benefits
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