Multiple Bug Spectral Fault Localization Using
Genetic Programming

Lee Naish, Neelofar, Kotagiri Ramamohanarao
Department of Computing and Information Systems
The University of Melbourne, Victoria 3010, Australia
Email: {lee, kotagiri} @unimelb.edu.au, neelofar.eme @gmail.com

Abstract—Debugging is crucial for producing reliable software.
One of the effective bug localization techniques is Spectral-
Based Fault Localization (SBFL). It locates a buggy statement by
applying an evaluation metric to program spectra and ranking
program components on the basis of the score it computes.
Recently, genetic programming has been proposed as a way to
find good metrics. We have found that the huge search space
for metrics can cause this approach to be slow and unreliable,
even for relatively simple data sets. Here we propose a restricted
class of “hyperbolic” metrics, with a small number of numeric
parameters. This class of functions is based on past theoretical
and empirical results. We show that genetic programming can
reliably discover effective metrics over a wide range of data sets
of program spectra. We evaluate the performance for both real
programs and model programs with single bugs, multiple bugs,
“deterministic” bugs and nondeterministic bugs.

I. INTRODUCTION

Debugging software is a very important and resource inten-
sive task in software engineering, with 50% to 80% of software
development and maintenance costs attributed to bug fixes
[1]. Debugging requires fault localization at the initial stage.
This is a tedious process, requiring substantial manual work.
Due to this cost, many researchers are studying and proposing
effective approaches which involve automated tools to aid fault
localization. There are many techniques proposed for fault
localization and debugging in literature. Spectral based fault
localization (SBFL) techniques [2], [3], [4], [5] have gained
much popularity in last few years due to their simplicity. These
methods extract program spectra, that is execution profiles of
program components (statements, predicates, functions etc.)
and information on whether tests pass or fail. The data is used
with “risk evaluation” metrics to rank the program components
according to how likely they are to be buggy.

Performance of SBFL methods critically depend on the
metrics used. Over one hundred metrics have been developed
manually and evaluated for SBFL. More recently, genetic
programming has been used to automatically develop metrics
[6], resulting in many thousands being evaluated. For programs
with a single bug, SBFL is relatively easy and we now have a
good theoretical understanding [5], [7]. The same is true for
locating bugs which are “deterministic” (cause test case failure
whenever they are executed) [8]. However, the general case
where there are multiple bugs which may not be deterministic
is much more complicated. Most SBFL research to date has
had a strong bias towards single bug programs, partly due to

the available data sets used for evaluation, and tackling the
general case is an important priority.

In this paper we make the following contributions:

o We propose a new class of “hyperbolic” metrics which
have a small number of numeric parameters whose values
can be adjusted to vary the behaviour.

o Depending on the parameter values, hyperbolic metrics
can be optimal for single bugs, optimal for deterministic
bugs or similar to other metrics known to perform well
for some multiple nondeterministic bug benchmarks.

e We describe how genetic programming can be used to
find good parameter values for hyperbolic metrics, given
training data.

e We use a range of model programs to show that the
technique matches the performance of optimal metrics in
the single bug and deterministic bug cases, and performs
very well in intermediate cases.

o« We use a data set from real multiple bug programs to
show the technique can out-perform the best previously
known metrics on average. Ten-fold cross validation is
used to demonstrate the effectiveness of the learning.

The rest of the paper is structured as follows. Section II

provides background information on SBFL (some material is
based on [8] without additional citation), including theoretical
results which motivate our approach, and gives the definitions
of selected metrics from the literature that we use for compar-
ison. Section III motivates and defines the class of hyperbolic
metrics and Section IV briefly describes how we use genetic
programming to learn parameter values. Section V describes
experiments and their results, using spectral data from both
model programs and real programs. Section VI briefly reviews
some additional related work and Section VII concludes.

II. BACKGROUND

SBFL methods use a set of tests, each classified as failed
or passed; this can be represented as a binary vector, where 1
indicates failed and O indicates passed. For statement spectra
[9], [4], [101, [5], [11], [7], [8], which we use here, we gather
data on whether each statement is executed or not for each
test. This can be represented as a binary matrix with a row for
each statement and a column for each test; 1 means executed
and 0 means not executed. For each statement, four numbers
are ultimately produced. They are the number of passed/failed
test cases in which the statement was/wasn’t executed —

TABLE I
STATEMENT SPECTRA WITH TESTS T} ... T5

T | T | T3 | Ty | T3 ef ep
S1 1 0 0 1 0 1 1
So 1 I 0 1 0 2 1
S3 1 1 1 0 1 2 2

[Res.“][l[O[(:)[O”F:Q P=3

TABLE I
FORMULAS FOR SEVERAL RISK EVALUATION METRICS

o7 T3] o~
04 [8] <

P~ efFniil
Zoltar [13] <

eftnftept 1ooooer}fxap

Kulczynski2 [11] % (75 fifn 7 + fifep)
Ochiai [4] e/

\/(6f+7}f>(ef+ep)
fW

Tarantula [2]

ep
eptnp

(ef,ep,nf,np), where the first letter indicates whether the
statement was executed (e) or not (n) and the second indicates
whether the test passed (p) or failed (f). We use I’ and
P to denote the total number of tests which fail and pass,
respectively. Clearly, nf = F — ef and np = P — ep and it
is sometimes convenient to use F', P, ef (or nf) and ep (or
np) rather than all four ¢5 values. Table I gives an example
binary matrix of execution data and binary vector containing
the test results. This data allows us to compute F', P and all
the 77 values.

Metrics, which are numeric functions, can be used to rank
the statements. Most commonly they are defined in terms
of the four 75 values. Statements with the highest metric
values are considered the most likely to be buggy. We would
expect buggy statements to generally have relatively high ef
values and relatively low ep. Table II gives definitions of the
established metrics used here and cites where they were first
used for SBFL. More than 150 metrics are evaluated in [12];
our small selection is justified below. Programmers searching
for a bug are expected to examine statements, starting from the
highest-ranked statement, until a buggy statement is found. In
reality, programmers may well modify the ranking due to other
considerations, and checking correctness generally cannot be
done by a single statement at a time. Evaluation of different
ranking methods generally ignores such refinement and just
depends on where the bug(s) appear in the ranking. Here
we use a common measure, “rank percentage” which is the
rank of the top-ranked bug, expressed as a percentage of the
program size. Results are averaged over all buggy programs
in the benchmark set. Statements which are not executed in
any test are ignored.

Most evaluation of SBFL has a strong bias to programs with
a single bug. This problem is now reasonably well understood.
OP was proposed in [5] and proven optimal with respect to

a single bug “model” program. This optimality result was
strengthened in [7] to arbitrary single bug programs and test
sets by restricting attention to “strictly rational” metrics, which
are those whose value strictly increases in ef when ep is fixed
and strictly decreases in ep (or increases in np) when ef is
fixed. Metrics such as OP which rank statements primarily on
their ef value and use np to break ties when the e f values are
equal are single bug optimal. In [8] it was shown that metrics
such as O¢ which rank statement primarily on np and break
ties using e f are optimal for programs with only deterministic
bugs (which cause failure whenever they are executed).

Between these two extreme cases we may have multiple
bugs, some of which are not deterministic, which is the
norm in large software systems. There is little theorectical
understanding of this more general case and constructing
metrics which perform well seems to be a very challenging
problem. Any given bug is typically not executed in all failed
tests and not all tests in which it is executed will fail. Metrics
which are derived for or perform well for the single bug
(or deterministic bug) case often do not perform well in the
general case. It was argued in [8] that no single metric will
perform well in all situations, but using information such as
the likely number of bugs and how consistently their execution
causes failure, we may be able to construct specialised metrics
which perform well. Unfortunately, there is a paucity of good
data sets to evaluate performance in the general case.

In our experiments here we include optimal metrics for the
two extreme cases, OP and O%. Zoltar is close to optimal for
deterministic bugs and also performs well for multiple bug
programs [11]. Kulczynski2 and Ochiai perform extremely
well for the multiple-bug data sets of [11] which we use here.
A version of Ochiai is proved to be the best on benchmarks
from the Software-artifact Infrastructure Repository(SIR) [12].
Tarantula was the first metric used for SBFL and though
it performs relatively poorly for many data sets a small
adjustment makes it optimal for deterministic bugs [8] and
it performs reasonably well towards this extreme.

There has been some recent success using genetic program-
ming to construct metrics. Metrics which are nearly optimal
for the single bug case have been constructed automatically
[6]. However, in our experiments we have failed to reproduce
this behaviour reliably and to our knowledge, standard ways
of assessing machine learning techniques such as 10-fold cross
validation have not been applied and learning good metric for
the general case is significantly harder.

III. THE HYPERBOLIC METRIC CLASS

This section motivates and defines the class of “hyperbolic”
metrics we propose. Rather than a single fixed formula, we
use a formula with several additional numeric parameters. The
general idea is to be able pick different parameter values so
the resulting formula performs well for different data sets.
Later we describe how we use genetic programming to choose
the parameter values. Using machine learning to find a small
number of numeric parameters rather than a complete formula

. Single Bug Optimal
100 a. Single Bug Optimal 100

b. Deterministic Bug Optimal

c. Hyperbola

80 80

60 60

nf
nf

40 40

20 20

nf

U
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|

0 20 40 60 80 100 0 20
ep

ep

|
|
|
|
|
|
|
|
|
|
\
|
\
\
Ll

0 80 100

Fig. 1. Contour plots for OP (a), O%(b) and a%f + é (c).

makes the learning task much simpler and, we have found,
more efficient and reliable.

A. Motivation for Hyperbolic Metrics

Since F' and P are fixed for a given set of test outcomes,
a metric defined in terms of F, P, ef (or nf) and ep (or
np) can be viewed as a surface in three dimensions. In [8]
it was noted that plotting the contours of a metric over its
rectangular domain (F' x P) gives useful insights. There is a
1:1 relationship between contours and the rankings produced
by a metric. If we plot metric contours using ep and nf as
the axes then strictly rational metrics have contours with finite
strictly negative gradients, with the contours close to (0,0)
corresponding to the highest metric values. If all gradients are
sufficiently close to zero the metric is single bug optminal,
like OP, whereas if all gradients are sufficiently large negative
numbers the metric is deterministic bug optminal, like o
— see Figure 1(a),(b). Figure 1(c) shows contours which are
hyperbolas with negative gradients. The contours at the bottom
right of this plot are like those of OP whereas those at the top
left are like those of O“. Thus by selecting part of the domain,
hyperbolas can be optimal for either of the extremes.

Between these extremes, the gradients of the hyperbolic
contours increase (get closer to zero) as ep increases. At
the bottom left there is a very sharp increase and as we
proceed up and right the increase is more gradual. If we
“zoom in” sufficiently in the top right the contours are close to
straight lines with a gradient of —1. In experiments on multiple
bug programs, metrics such as Kulczynski2 and Ochiai have
performed best overall [11]. The contours of these metrics also
have decreasing gradients and are similar to the hyperbolic
contours for selected parts of the domain — see Figure 2(a),
(b) and (c). Note that the contours at the bottom left correspond
to the top of the ranking and are thus the most important for
performance of a metric. Thus the motivation for using metrics
with hyperbolic contours is they can be optimal in the two
extreme cases we have theoretical results for, and similar to
the best metrics we know of in other cases.

B. Hyperbolic Metrics

We now define the class of metrics used. There are four
adjustments to the simple formula. The first is to scale both
the n f and ep values to the range 01 (the aim of this is to help
limit the range of values for the parameters introduced in the

next steps). There are several ways scaling can be done: divide
by F' and P respectively, divide by F'+ P or divide by nf+np
and ef + ep respectively. Our choice is based on performance
for one data set rather than theoretical analysis. The second
adjustment is to add a parameter K to the scaled nf value. A
positive K value translates the domain upwards and a large
enough value results in a deterministic bug optimal metric if
other things remain unchanged. The third adjustment is to add
a parameter K to the scaled ep value. A positive Ko value
translates the domain to the right and a large enough value
results in a single bug optimal metric if other things remain
unchanged (that is, K is relatively small). If K7 and K, are
small, contour gradients change abruptly whereas if they are
both large the gradients change slowly. Lastly, we multiply the
ep term by parameter K. This allows us to effectively stretch
or compress the domain in a horizontal direction. With large
identical K; and K values the contours are close to straight
lines, but their gradient can be adjusted using K5. The overall
formula for our class of hyperbolic metrics is as follows:

1 K3

+ b
Ky + nfn-[ef Ko + eptef

IV. FINDING PARAMETER VALUES USING GENETIC
PROGRAMMING

Yoo el al. propose to use genetic programming to generate
metrics directly from spectral data [6]. In our efforts to
reproduce the results, we found that the results are not reliably
good, especially in the case of multiple bugs. In some runs
good metrics were found but in many cases they were not.
The search space is huge and the choice of GP operators often
makes it hard to gradually improve the metrics. For example,
subtracting a good metric from another good metric often
results in a very bad metric. Even our attempts to constrain
the search to more sensible metrics, such as those which are
strictly rational, were not particularly successful. In contrast,
learning three numeric parameter values is a much simpler
task, and a small change in parameter values generally results
in a relatively small change in metric performance — the
objective function is more “smooth” in some sense. We re-
used the genetic programming software to learn the hyperbolic
metric parameter values K, K5 and K3 from training data
and applied the resulting metric to localize bugs.

a. Kulczynski2
100 100

b. Ochiai

c. Hyperbolic

nf
nf

40 40

20 20

80 80 %)
60 60 60

100

nf

40

0 20 40 60 80 100 0 20
ep

Fig. 2.

In our experiments we used JGAP — an open source
Java based framework for genetic programming. There are
many ways in which the learning can be adjusted. For the
results presented here we used a population size of 1000
and stopped after 100 generations. GP is configured with a
mutation operator with the rate of 0.9. The three parameters
of the hyperbolic metrics were used as terminal symbols and
we fixed the range of K7 and K> to be 0-100 and K3 to be
0-2. The GP operators increased and decreased the parameters
within these ranges. We found that for different runs on the
same data there was quite a wide variation of parameter values
found, though the ratio of K; and K5 was more stable.

V. EXPERIMENTAL EVALUATION

To evaluate our technique we used data from model pro-
grams as described in [5] and real data from the Siemens
Test Suite [14] and small Unix programs. We describe the
experiments using models first.

A. Model program experiments

The model-based approach is explained in detail in [5].
An advantage of using models is that large data sets with
precisely controlled parameters can be generated. Here we use
six different model programs, each with four statements, where
execution of correct statements is statistically independent of
test case failure but execution of buggy statements is correlated
to varying degrees. In the first model, only the first statement
is a bug (so OP is optimal) and execution of the bug leads
to test case failure 20% of the time. In models 2-6 the first
two statements are buggy, each of which cause failure in 20%,
40%, 60%, 80% and 100% of cases where they are executed,
respectively (thus the last model has only deterministic bugs
and O is optimal). The first two statements are modelled
using ten execution paths, five of which execute the statement
and a number of those lead to failure, dependent on the model.
The other two statements are each modelled using just two
execution paths, one of which executes the statement. The
models are designed so the relative discrimination of ef versus
ep drops as we go from model 1-6, and this affects what metric
is best to use for each of these models. For our experiments
we used 100000000 test sets, each with 15 passed and 5 failed
tests. Learning was done on 50000 instances.

60 80 100 0 20 40 60 80 100

ep ep

Contour plots for Kulczynski2 (a), Ochiai (b) and hyperbolic metrics(c).

Table III shows the comparison of average rank percentage
for learned hyperbolic metrics and previously established
metrics on model data explained above. The best results
for each line are shown in bold. As expected, OP and o
perform best for the first and last models, respectively —
these are known to be optimal. The hyperbolic metrics match
this optimal performance. They also do better than all other
metrics evaluated for the models with 40% and 60% bug
consistencies. For the fifth model the performance is very good
but not the best and for the second model it is not particularly
good. The best performance for these two models are given
by O? and OP, respectively. Hyperbolic metrics can mimic
these two metrics by appropriate choice of parameter values,
so we can conclude the less than best performance is due to
the learning method rather than the hyperbolic metric class
itself. We believe that by making adjustments to the learning
method it should be possible to learn good hyperbolic metrics
for these two model, to make hyperbolic metrics achieve the
best performance in all the models examined.

B. Real program experiments

For Siemens test suite and Unix, we used the data of [11],
where versions of the programs with two bugs were created
by combining two single bug versions. We used total of 1262
two bug versions of Cal, Checkeq, Col, replace, print_tokens,
Spline, tcas, tot_info, Tr and Uniq for our experiments.

Table IV shows comparison of average rank percentages of
various metrics on the Siemens Test Suite and subset of Unix.
The first ten rows show the results for 10-fold validation. For
each validation run we randomly divided the 1262 programs
into training and testing partitions with 90% and 10% of the
programs, respectively. We used the training partition to find
values of hyperbolic metric parameters and used the testing
partition to find the average rank percentages for the trained
hyperbolic metric and the other metrics. This approach is
commonly used to evaluate machine learning techniques. The
testing data is separated from the training data to avoid “over
fitting” and there are multiple runs to evaluate consistency.

The hyperbolic metrics outperform other metrics in most of
the runs and on average. Note that [11] evaluated performance
of over 80 metrics for two and three bug versions of the
Siemens test suite and Unix benchmarks and Kulczynski2 and
Ochiai were the best performing metrics. Thus beating these

TABLE III
AVERAGE RANK PERCENTAGES FOR MODELS WITH DIFFERENT BUG CONSISTENCIES

Bugs | Consistency oP O? | Ochiai | Zoltar | Kul2 | Tarantula | Hyperbolic
1 20% | 26.12 | 48.84 26.64 26.13 | 26.20 30.22 26.12
2 20% | 28.97 | 34.94 29.00 | 28.97 | 28.97 30.13 29.50
2 40% | 28.48 | 30.36 28.12 | 28.43 | 28.36 28.31 28.01
2 60% | 28.06 | 27.04 27.08 | 27.83 | 27.60 26.77 26.53
2 80% | 27.92 | 25.57 26.01 | 27.01 | 26.50 25.82 25.62
2 100% | 29.52 | 26.74 26775 | 26.74 | 26.74 30.50 26.74
TABLE IV

VALIDATION OF LEARNING HYPERBOLIC METRICS FOR REAL TWO-BUG PROGRAMS

Run # or O% | Ochiai | Zoltar Kul2 | Tarantula | Hyperbolic
1 8.5589 | 12.9314 | 82348 | 8.2368 | 7.8830 9.3710 7.5796
2 8.2981 | 12.7456 | 7.4348 | 7.3441 7.0153 8.9626 7.1798
3 8.7780 | 12.4552 | 8.7744 | 7.9651 8.0189 9.1145 7.4434
4 9.8355 | 11.9914 | 7.9703 | 8.1220 | 7.9094 8.4635 7.4619
5 8.9519 | TI.I911 | 6.8386 | 7.7156 | 7.2334 7.8279 6.8245
6 9.2180 | 10.7376 | 6.5247 | 7.3386 | 6.5262 7.6621 6.4787
7 8.7144 | 12.2496 | 8.0000 | 7.5995 7.2740 9.1989 7.4502
8 9.1017 | 11.9229 | 8.0081 | 8.7738 8.0727 8.4518 7.6873
9 7.3316 | 12.0082 | 6.6867 | 7.0915 6.7641 7.9456 6.5009
10 8.5498 | 11.2670 | 7.3264 | 7.8023 7.4553 8.3404 7.4905
Average | 8.7338 | 11.9500 | 7.5799 | 7.7989 | 7.4152 8.5338 7.2097
P Value | 0.0020 0.0020 | 0.0098 | 0.0020 | 0.0488 0.0020 -

metrics for this data set is an impressive achievement. Each
run evaluates only 10% of the data set and results therefore
vary between runs. The last line of the table shows the p-value
for the Wilcoxon signed rank test, comparing the results for
the hyperbolic metrics with the other metrics. Its shows we can
be confident that the learned hyperbolic metrics perform better
than all the other metrics except Kulczynski2 and Ochiai.
For these two metrics, more runs would be required in order
to achieve a p-value less than 0.05 (the normal standard for
statistical significance), but we can say with high confidence
the method achieves excellent results on real data. In other
experiments we have used all the data for both training and
testing, and found hyperbolic metrics which perform better
than Kulczynski2 and Ochiai for the whole data set. For such
experiments there is no question of statistical significance, but
from the machine learning perspective one can question both
reliability and the possibility of over fitting.

VI. OTHER RELATED WORK

Landsberg et al. [12] evaluate 157 different similarity met-
rics from the literature for SBFL and show how many are
equivalent for ranking purposes. The Pattern-Similarity metric
[?], and a simpler equivalent metric, PattSim2 = —nf X ep,
have hyperbolic contours identical to those in Figure 1(c).
Furthermore, in all these metrics small “prior constants” are
added to the spectral values to avoid division by zero etc.
These are not needed for PattSim2 since there is no division,
but the resulting metric is of the form —(nf + K1)(ep+ Ks).
These two constants effectively translate the contours verti-
cally and horizontally in the same way as K; and K5 in our
hyperbolic metrics, and make the metric strictly rational. By
manually selecting the two constant values, this metric was
found to perform better than all others from the literature for
a benchmark set which included the Siemens programs plus

several significantly larger programs with multiple bugs. Our
work differs in that we have three parameters rather than two,
we scale the spectral values to the range 0-1 and we find the
constants automatically, using machine learning techniques.
Landsberg et al. also experimented with adapting metrics so
they are single bug optimal, in the same way as proposed in
[7]. The single bug optimal version of Ochiai performed the
best of all metrics considered.

Slicing and Dicing are considered as one of the oldest
techniques in debugging and fault localization. Slicing refers
to the piece of program code that affects the value of any
variable while dicing is the part of program, which appears in
one slice but not in another. These approaches narrow down
the program part, which is more likely to be buggy so that
developer can concentrate on a small part of the code for fault
localization [11][15].

Mutant based fault localization (MUSE) identifies the fault
or bug by utilizing the information obtained by mutating the
faulty and correct statement [16]. The technique uses the
intuition that if a faulty statement is mutated, it will cause
more tests to pass than average and if a correct statement is
mutated, it will cause more tests to fail then average. These
intuitions are the basis of MUSE [17][18][19].

State based approaches aim to localize the bugs by ob-
serving the changing state of the program and identifying the
failure inducing circumstances [20][21][22]. Failure Inducing
Circumstances refer to the input to the test cases which causes
it to fail e.g. program input (particular URL input fails the web
browser), User Interaction (keystroke of the user causing the
program to fail) and changes to the program code.

There are many studies found that test reduction and test
selection could help in improving the performance of fault
localization technique. Recently, many machine learning and

data mining approaches are proposed in this area which can be
used together with spectra-based approaches. Most of the work
is done in test case clustering in this domain [23][24][25].

Most of the formulas or metrics used in Spectral based
fault localization are not designed specifically for debugging.
Jaccard for example used for biological classification for the
first time and Ochiai used in marine zoology [26]. Tarantula
was the first metric designed for spectral debugging [9]. Few
other widely used metrics are Ample [27], Zoltar [13], Wong
[10] etc.

Naish et al. propose optimal metrics for single bug [5] and
deterministic bug programs [8] which are empirically proved
to be the best metrics in these areas. They, however, do not
perform equally well on multiple bug data.

There are few techniques available in literature for multiple
bug problem which are combination of spectral based with
machine learning or model based approaches. Some of these
are given below.

James et al. present a clustering approach for debugging in
parallel in presence of multiple bugs. Using fault localization
information from program execution and behaviour models,
they develop a technique that automatically partitions the
failing test cases into clusters that target different faults.
These clusters are called fault focusing clusters. Each fault
focusing cluster is then combined with all the passing test
cases to get a specialized test suite that targets a single
fault. These specialized test suits can then be assigned to
different developers who can work in parallel for debugging
and localizing bugs [23].

Abreu el al. present a multi fault localization technique
called BARINELL by combining spectral based fault local-
ization and model based reasoning. Model based approaches
are more accurate as compared to spectral fault localization but
due to their computational complexity they are very expensive
for large applications. BARINELL, however, uses effective
candidate selection process that reduces it’s complexity and
make it better candidate for large programs as well [28].

Wong et al. propose a crosstab-based statistical fault local-
ization technique(CBT). The technique uses statement based
coverage information. A comparison has been made between
CBT and Tarantula and results prove CBT better then taran-
tula. The technique is claimed to be effectively applicable for
multiple bug programs [29].

VII. CONCLUSION AND FUTURE WORK

Performance of SBFL is strongly influenced by the choice
of metric used to estimate the likelihood that a given pro-
gram component is buggy. We have proposed the class of
“hyperbolic” metrics, named after the shape of the contours in
plots of the metrics. The class has a small number of numeric
parameters, the values of which can be determined by machine
learning from training data. We have shown that learned hy-
perbolic metrics can perform as well or better than previously
discovered metrics in a wide range of situations. Using model
programs we have demonstrated that these metrics can achieve
optimal performance for programs with a single bug and with

deterministic bugs (where bug execution always leads to test
case failure) — the two extreme cases we have theoretical
results for. In a range of other model programs, with two bugs
which cause failure with varying consistency, the results are
also good but indicate the machine learning method we use (a
form of genetic programming) has potential for improvement.
Using data from small real programs seeded with two bugs the
learned hyperbolic metrics out-performed the best previously
know metrics on average.

One clear area for further improvement is in the learning
component. We plan to experiment with different genetic
programming parameters and applying other machine learning
techniques. Given that we are only learning a small number
of numeric values, the power of genetic programming is
probably not needed. We are confident that the learning can
be made more accurate, reliable and efficient. Validation of
the approach on other data sets is also a priority, particularly
programs which are larger and have more than two bugs.

We further plan to add parameters to Ochiai and Kulczyn-
ski2 and see if we can use learning to improve these metrics.

ACKNOWLEDGEMENTS

We would like to thank Jason (Hua Jie) Lee, who generated
the real program data set we used and continues to be involved
in discussions on this research area.

REFERENCES

[1] J. S. Collofello and S. N. Woodfield, “Evaluating the effectiveness of
reliability-assurance techniques,” Journal of systems and software, vol. 9,
no. 3, pp. 191-195, 1989.

[2] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th international
conference on Software engineering. ACM, 2002, pp. 467-477.

[3] B. Liblit, “Cooperative Bug Isolation,” Ph.D. dissertation, University of
California, 2004.

[4] R. Abreu, P. Zoeteweij, and A. van Gemund, “An evaluation of similarity
coefficients for software fault localization,” PRDC’06, pp. 39-46, 2006.

[5] L. Naish, H. J. Lee, and R. Kotagiri, “A model for spectra-based software
diagnosis,” ACM Transactions on software engineering and methodology
(TOSEM), vol. 20, no. 3, August 2011.

[6] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Search Based Software Engineering. Springer, 2012,
pp. 244-258.

[7]1 L. Naish, H. J. Lee, and R. Kotagiri, “Spectral debugging: How much
better can we do?” in 35th Australasian Computer Science Conference
(ACSC 2012), CRPIT Vol. 122. CRPIT, 2012.

[8] L. Naish and H. J. Lee, “Duals in spectral fault localization,” in
Proceedings of ASWEC 2013. 1EEE Press, 2013.

[9] J. Jones and M. Harrold, “Empirical evaluation of the Tarantula auto-

matic fault-localization technique,” Proceedings of the 20th ASE, pp.

273-282, 2005.

W. E. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective Fault Localization

using Code Coverage,” Proceedings of the 31st Annual IEEE Computer

Software and Applications Conference, pp. 449-456, 2007.

H. J. Lee, “Software Debugging Using Program Spectra,” Ph.D. disser-

tation, University of Melbourne, 2011.

D. Landsberg, H. Chockler, D. Kroening, and M. Lewis, “Evaluation of

measures for statistical fault localisation and an optimising scheme,” in

Fundamental Approaches to Software Engineering. Springer, 2015, pp.

115-129.

A. Gonzalez, “Automatic Error Detection Techniques based on Dynamic

Invariants,” Master’s thesis, Delft University of Technology, The Nether-

lands, 2007.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405435,
2005.

H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization
using execution slices and dataflow tests,” Software Reliability Engineer-
ing, pp. 143-151, 1995.

S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in Software Testing, Verification
and Validation (ICST), 2014 IEEE Seventh International Conference on.
IEEE, 2014, pp. 153-162.

M. Papadakis and Y. Le Traon, “Using mutants to locate” unknown”
faults,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. 1EEE, 2012, pp. 691-700.
V. Debroy and W. E. Wong, “Combining mutation and fault localization
for automated program debugging,” Journal of Systems and Software,
vol. 90, pp. 45-60, 2014.

M. Papadakis and Y. Le Traon, “Effective fault localization via mutation
analysis: a selective mutation approach,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing. ACM, 2014, pp.
1293-1300.

A. Zeller, “Isolating cause-effect chains from computer programs,” ACM
SIGSOFT Software Engineering Notes, vol. 27, no. 6, p. 10, 2002.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” Software Engineering, IEEE Transactions on, vol. 28, no. 2, pp.
183-200, 2002.

X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated

(23]

[24]

[25]

[26]

[27]

[28]

[29]

predicate switching,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 272-281.

J. Jones, J. Bowring, and M. Harrold, “Debugging in parallel,” Proceed-
ings of the ISSTA, pp. 16-26, 2007.

H. Hsu, J. Jones, and A. Orso, “RAPID: Identifying bug signatures to
support debugging activities,” in 23rd IEEE/ACM International Confer-
ence on Automated Software Enginering, 2008. ASE 2008, 2008, pp.
439-442.

L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in Software Reliability, 2007. ISSRE’07. The
18th IEEE International Symposium on. 1EEE, 2007, pp. 137-146.
A. Ochiai, “Zoogeographic studies on the soleoid fishes found in japan
and its neighbouring regions,” Bull. Jpn. Soc. Sci. Fish, vol. 22, no. 9,
pp. 526-530, 1957.

V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization
with ample,” in Proceedings of the sixth international symposium on
Automated analysis-driven debugging. ACM, 2005, pp. 99-104.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based
multiple fault localization,” in Automated Software Engineering, 2009.
ASE’09. 24th IEEE/ACM International Conference on. 1EEE, 2009,
pp. 88-99.

W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localization:
A crosstab-based statistical approach,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 42, no. 3,
pp. 378-396, 2012.

