
Pawns: a declarative/imperative language

Lee Naish
Computing and Information Systems

University of Melbourne
(actually, not quite. . .)

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 1 / 1

Contribution (intended at least)

Another take on combining declarative and imperative programming

The general aim is to encourage a declarative style of programming but
also allow the use of powerful and “dangerous” imperative constructs (eg,
where they can greatly enhance efficiency)

The challenge is to encapsulate the dangerous imperative code so any
“contamination” is limited

Most of the time you can wear board shorts and relax in the tropical
paradise that is declarative programming

There are clear signs when you have to put on a bomb suit and
concentrate on avoiding the “surprises” of imperative programming

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 2 / 1

More specifically. . .

Typical declarative programming features (but not lazy evaluation)

Typical algebraic data type definitions, but an extension to pattern
matching allows access to pointers/references (to arguments of data
constructors)

Destructive update (via pointers) whenever you want it

“Interface integrity” via explicit annotation of which variables may be
updated at each program point (the implementation does sharing analysis)

Preconditions and postconditions concerning sharing (eg, you can say
“whenever this function is called, these two arguments must not share”)

Caveat: a work in progress . . .

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 3 / 1

Outline

Declarative and imperative programming

Three views of algebraic data types

(De)constructing and updating values in Pawns

Examples

Other issues

Related work

Conclusion

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 4 / 1

Declarative and imperative programming

Declarative programming is about manipulating values, independently of
how they are represented, stored etc. Variables are just names for values

Imperative programming is about storing values in memory locations.
Variables are primarily names for memory locations (lvalues)

Destructive update of atomic values is not a big issue — variables can be
renamed statically (“x” has three different meanings below):

int x,y,z; x = 42; y = x; x = x+1; z = x; ... ->

int x0,x1,y,z; x0 = 42; y = x0; x1 = x0+1; z = x1; ...

Destructive update of non-atomic values is a big issue — other
values/variables may be affected also, due to sharing of representations

list x,y; x = init(); y = x; update(x);

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 5 / 1

Three views of algebraic data types

1) High level view:

data Colour = Red | Green | Blue

data List = Nil | Cons Color List

l1 = Cons Blue (Cons Blue Nil)

2) “Ref” view: wrap each data constructor argument with a Ref

data Colour = Red | Green | Blue

data List = Nil | Cons (Ref Color) (Ref List)

data Ref t = Ref t

l1 = Cons (Ref Blue) (Ref (Cons (Ref Blue) (Ref Nil)))

Equivalent to (or a special case of) the high level view

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 6 / 1

Three views of algebraic data types (cont.)

For each cons cell there are two references/addresses (on the heap)

l1 = Cons Blue Cons Blue Nil

3) “Store” view: each ref is an integer and there is a separate store

data List = Nil | Cons (Ref Color) (Ref List)

data Ref t = Ref Int

l1 = Cons (Ref 65536) (Ref 65544)

l1t = Cons (Ref 70000) (Ref 70008)

store = {65536->Blue, 65544->l1t, 70000->Blue, 70008->Nil}

If a single value in the store is changed, several high level values may
change

This view is needed to understand destructive update

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 7 / 1

Why would we ever want the store view?

Updating shared structures is vital to many important efficient algorithms

Eg, converting expressions to a normal form (outermost evaluation with
sharing of common sub-expressions):

data Expr = Times Expr Expr | Plus Expr Expr | ...

e1 = Times zero x -- avoid evaluating x

e2 = Times ten x -- avoid evaluating x ten times

Eg, unification in Prolog (if X is bound to Y and Y is bound to Z, then
when Z gets bound, so do X and Y):

data Term =

Var Term | -- variables are pointers (possibly to self)

Nonvar Constructor [Term] -- could refine this

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 8 / 1

(De)constructing and updating values in Pawns

High level method of replacing the head of a list cs0 with Red:

case cs0 of (Cons c cs) -> Cons Red cs

In Pawns we can expose the ref/pointer view by putting “*” before
variables (*csp is a list, csp is a pointer to a list, like list *csp in C):

case cs0 of (Cons *cp *csp) -> Cons Red *csp

Destructive update is done via pointers (see later for refinement!):

case cs0 of (Cons *cp *csp) -> *cp := Red; cs0

You can also define pointers to pointers etc (generally requires mallocs):

cs1 = Cons Red cs; ***cs1ppp = Cons Red cs -- no Ref or &

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 9 / 1

Destructive updates are obvious in Pawns!

Whenever a variable could be updated, the code must have a warning!
Pawns = Pointer Assignment With No Surprises

*cp := Red -- ERROR -> *!cp := Red !cs0 -- OK

Example: building a BST of Items from a List

list_bst:: List -> Tree list_bst_du:: List -> !Ref Tree->()

list_bst xs = list_bst_du xs !tp =

*tp = Empty case xs of

list_bst_du xs !tp (Cons x xs1) ->

*tp bst_insert_du x !tp

list_bst_du xs1 !tp

()

Nil -> ()

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 10 / 1

Examples (cont.)

The function that does the real work:

bst_insert_du:: Item -> !Ref Tree -> ()

bst_insert_du x !tp =

case *tp of

Empty ->

*!tp := Node Empty x Empty -- insert new node

(Node *lp n *rp) ->

if x <= n then

(bst_insert_du x !lp) !tp

else

(bst_insert_du x !rp) !tp

More elegant than typical imperative versions and more efficient (and
slightly shorter) than typical declarative versions

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 11 / 1

Examples (cont.)

A cord (containing lists) allows constant time concatenation; we can
potentially convert it to a single list in O(N) time and constant space by
destructively concatenating the lists it contains

data Cord = Leaf List | Branch Cord Cord

...

cordlist1 :: !Cord -> !Ref List -> Ref List

-- csp points to Nil of list we smash; returns ptr to new Nil

cordlist1 !cc !csp =

case cc of

(Leaf cs) ->

*!csp := cs !cc!cs -- cc, cs are safe

lastp csp -- return ptr to Nil of csp

(Branch cc1 cc2) ->

csp1 = (cordlist1 !cc1 !csp) !cc!cc2 -- cc2 is safe

(cordlist1 !cc2 !csp1) !cc!csp

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 12 / 1

Examples (cont.)

How can a programmer reason that cc, cs and cc2 are not really modified
by the code of cordlist1?

Actually, they can be modified if the lists in the cord share; the compiler
analysis (hopefully) alerts the programmer to this fact

The postcondition of cordlist1 is the data in the leaves of cc share with
csp and the result (similarly for the precondition)

Functions which add a new list to a cord (eg, cord_app) can have a
precondition which prevents sharing — a safe interface

cord_app:: (cc0::Cord -> cs::List -> cc::Cord)

precond nosharing

postcond cc = Branch cc0 (Leaf cs)

...

cc0 = list_cord cs

cc1 = cord_app cc0 cs -- ERROR: cc0 and cs share
Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 13 / 1

Other issues

Support for

“Unknown” and “const” sharing

Arrays (with refs)

IO, etc

Pointer equality

While loops. . .

Specifying which parts of a data structure can (not) be updated

Combining polymorphism, higher order and destructive update. . .

Formal type system, preservation, progress, referential transparency for
code without “!”. . .

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 14 / 1

Some related work

ML (etc): types can contain explicit updatable refences but not implicit
ones (no low level view of high level types). It can be less clear what
variables are changed by an update

Disciple: “region” information (like transitive sharing) is declared and/or
inferred. It can be less clear what variables are changed by an update.
Higher order etc supported (complicated)

Mars: declarative semantics for update — copying is done if sharing
analysis concludes that destructive update is not safe (can’t destructively
update possibly shared things)

Mercury (etc): sharing analysis used for compile time garbage collection
and structure re-use (can’t destructively update possibly shared things)

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 15 / 1

Conclusions

Some important algorithms cannot easily be expressed in a declarative way

Algebraic data types can be viewed at different levels of abstraction,
allowing the “ref” view without changing the definition/implementation

Sharing analysis seems to provide a reasonable way to find bounds on the
effects of destructive update

Explicitly annotating expressions to show what variables may be affected
allows us to choose an appropriate level of abstraction when viewing code

A combination of annotations, pre-conditions and post-conditions allows
flexibility while alerting programmers to many potential errors

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 16 / 1

Some real code

Currently syntax is Prolog with operators declared, type processing is very
limited, general expressions are not supported in some places, . . .

func lastp(ref(bs):: q) = ref(bs):: r

precond nosharing

postcond ref(bs):: r = q.

lastp(q):

ref(bs):: q1 = *q;

cases bs:: q1 of (

case nil:

return(ref(bs):: q)

case cons(*h, *p):

return(ref(bs):: lastp(p))

).

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 17 / 1

Some real code (reformatted)

Compilation to C with macros derived from algebraic data types

bs* lastp(bs* q) {

bs* q1;

q1 = *q;

switch_bs(q1)

case_nil()

return q;

case_cons_ptr(h, p)

return lastp(p);

end_switch();

}

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 18 / 1

Or, if you prefer Haskell. . .

lastp :: (STRef v (Pbs v)) -> ST v (STRef v (Pbs v))

lastp q = do

let v1852 = q

q1 <- readSTRef v1852

case q1 of

(Pnil) -> do

let v12672 = q

return v12672

(Pcons h p) -> do

v43803 <- (lastp p)

return v43803

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language October 6, 2014 19 / 1

