
Pawns: a declarative/imperative language

Lee Naish
Computing and Information Systems

University of Melbourne

tinyurl.com/pawns-lang

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 1 / 21

Outline

Why bother?

Adding pointers and destructive update to FP

Pointers and destructive update in Pawns

Sharing analysis

Encapsulating impurity

IO and state variables

Implementation

Conclusion

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 2 / 21

Why bother?

FP is great: algebraic data types, polymorphism, higher order, no “nasty
surprises” when evaluating a function, eg foo x y

But sometimes destructive update of shared structures via pointers is
much more efficient or simple to express than the alternatives

Eg, graph reduction, union-find, representing a virtual world containing
multiple agents, building a binary search tree, . . .

Computer hardware should be used, not simulated in software for the sake
of semantic purity

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 3 / 21

Adding pointers and destructive update to FP

Pointers/references/refs can be represented using a data constructor

data Ref t = Ref t -- pointer to value of type t

Then you support the equivalent of *x = y in C (may affect x, y and
other vars)

-- Haskell (* SML *)

do -- ST monad

x <- newSTRef w let val x = ref w in

y <- ... let val y = ... in

z <- ... let val z = ... in

writeSTRef x y x := y

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 4 / 21

Distinguishing pure and impure code

The distinction between pure and impure code is done at the type level

Anything without refs cannot be destructively updated and is pure

Anything with refs can be destructively updated by anything that has
access to it (in Haskell it must be inside the ST monad)

You can end up with multiple versions of data types depending on what
parts of the data structure you want to update (eg, list element, list tail,
both or neither; potentially 256 versions of zip)

Converting from a pure data structure to an impure one is particularly
painful in Haskell because you must use a monad for the latter

Refs also introduce extra indirection in data structures

The Disciple language does things a bit differently but has a very complex
type system

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 5 / 21

Pointers and destructive update in Pawns

In Pawns you don’t have to put refs into data types (no extra indirection
or multiple versions, same with Disciple)

Refs/pointers to arguments of data constructors can be created using an
extension to pattern matching

All impure code has “!” annotations, checked by the compiler

Its clear what variables can get updated at each point

Pawns = Pointer Assignment With No Surprises

Impurity can be encapsulated: you can create a data structure using
destructive update then pass it to pure code

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 6 / 21

Memory model

The declarative view: variables denote values; memory is irrelevant

-- Haskell-ish syntax used for now

data Colour = Red | Green | Blue

data List = Nil | Cons Colour List

l1 = Cons Blue (Cons Blue Nil)

The imperative view (needed to understand and use destructive update):
some values are represented using words in main memory

Constants are atomic (small integer/one word), data constructors with
N > 0 arguments are tagged pointers to a block of N main memory words

l1 = Cons Blue Cons Blue Nil

Pawns has no explicit Ref but *xp denotes what xp points to (like C)

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 7 / 21

(De)constructing and updating values in Pawns

High level method of replacing the head of a list cs0 with Red:

case cs0 of (Cons c cs) -> Cons Red cs

In Pawns we can bind pointer variables using “*” in patterns

case cs0 of (Cons *cp *csp) -> Cons Red *csp

Destructive update is done via pointers (see later for refinement!):

case cs0 of (Cons *cp *csp) -> *cp := Red; cs0

LHS of let bindings can also have “*” (allocates ptr in memory word):

**cs1pp = cs0 -- ptr to ptr to contents/value of cs0

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 8 / 21

Destructive updates are obvious in Pawns

Whenever a variable may be updated the code must have a warning
and type signatures must indicate if an argument may be updated

*cp := Red -- ERROR -> *!cp := Red !cs0 -- OK

Building a BST from a list of ints (type signatures refined later):

data Tree = Empty | list_bst_du:: Ints -> !Ref Tree->()

Node Tree Int Tree list_bst_du xs !tp =

case xs of

list_bst:: Ints -> Tree (Cons x xs1) ->

list_bst xs = bst_insert_du x !tp

*tp = Empty list_bst_du xs1 !tp

list_bst_du xs !tp ()

*tp Nil -> ()

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 9 / 21

Destructive updates are obvious (cont.)

The function that does the real work:

bst_insert_du:: Int -> !Ref Tree -> ()

bst_insert_du x !tp =

case *tp of

Empty ->

*!tp := Node Empty x Empty -- insert new node

(Node *lp n *rp) ->

if x <= n then

(bst_insert_du x !lp) !tp

else

(bst_insert_du x !rp) !tp

More elegant than typical imperative versions and more efficient (and
slightly shorter) than typical declarative versions

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 10 / 21

Sharing analysis

In order to write/understand/analyse code with destructive update via
pointers, and know what variables and arguments need annotations, you
need to understand sharing of data structures

In Pawns you must declare sharing of arguments and results of functions
via preconditions and postconditions in the type signature

For BST building/insertion there is no sharing so its trivial, eg:

list_bst_du:: Ints -> !Ref Tree -> ()

sharing list_bst_du xs tp = _

pre nosharing

post nosharing

But if we have a function that has multiple arguments that are lists that
may be updated (for example), we have to think carefully

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 11 / 21

Sharing (cont.)

Suppose we want a version of ++ which destructively updates (the end of)
the first argument and returns the list as well

app_du:: !List -> List -> List adu1:: !Ref List -> List ->()

sharing app_du xs ys = zs sharing adu1 xsp ys = _

pre nosharing pre nosharing

post xs = ys; zs = xs post ys = *xsp

app_du xs ys = adu1 !xsp ys =

*xsp = xs case *xsp of

adu1 !xsp ys Nil ->

*xsp *!xsp := ys

(Cons _ *xsp1) ->

... cs1 = Cons Red Nil adu1 xsp1 ys

cs2 = app_du !cs1 (Cons Blue Nil)

cs3 = app_du !cs1 cs2 --- ERROR*2

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 12 / 21

Encapsulating impurity

We don’t want to think of how all values are represented all the time

By declaring “abstract” sharing it means we don’t know or care what a
variable shares with and (therefore) it should not be updated

This is the default but we can make it explicit as follows. Thus list_bst

has a “pure” interface but the implementation uses destructive update!

list_bst:: Ints -> Tree

sharing list_bst xs = t

pre xs = abstract

post t = abstract

The compiler checks consistency of sharing declarations and annotations,
update of “abstract” variables and type preservation

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 13 / 21

IO and state variables

Pawns programs can declare “state variables”; io is built-in

State variables can be declared as implicit arguments and/or results of
functions in the type signature: read-write, read-only or write-only

get_char :: () -> Int

implicit rw io

!counter :: Ref Int

use_counter :: List -> List implicit rw counter

init_counter :: Int -> () implicit wo counter

encapsulate_counter :: List -> List --- pure interface

encapsulate_counter xs = ...

!init_counter 42 -- binds *counter to 42

ys = !use_counter xs -- uses/updates *counter

...

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 14 / 21

State variables — pros and cons

State variables are “tame” global variables

+ Very easy to add extra state etc

+ Argument order etc not an issue

+ Diagnostic writes by ignoring “io undefined” errors

+/− Programmers think about global state

− Need for wo functions; could support eg, !*counter = 0

− Code less flexible (based on state variable names, not just their
types), including higher order

− Type checking for higher order a bit more complicated

− Semantics not quite so clear

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 15 / 21

Implementation

Pawns is compiled to C with macros etc to support algebraic data types

Very simple translation but gcc -O3 does a fantastic job

Few builtins/libraries but very easy interface to C (can even have C code
to define Pawns functions)

Compiler written in Prolog; uses Prolog operator declarations to support
(not so nice) syntax without writing a parser

Some known bugs in sharing analysis implementation, amongst other
things, but (apparently) correct algorithm has been published

On github so you are welcome to play around with it (or even
re-implement it:-)

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 16 / 21

Some real Pawns code

type bst ---> mt ; node(bst, int, bst).

type ints = list(int).

type rbst = ref(bst).

bst_insert_du :: int -> rbst -> void

sharing bst_insert_du(x, !tp) = v

pre nosharing post nosharing.

bst_insert_du(x, tp) = {

cases *tp of {

case mt:

*!tp := node(mt, x, mt)

case node(*lp, n, *rp):

if x <= n then

bst_insert_du(x, !lp) !tp

else

bst_insert_du(x, !rp) !tp

} }.

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 17 / 21

Implementation (cont.)

void bst_insert_du(intptr_t x, bst* tp) {

bst V0 = *tp;

switch_bst(V0)

case_mt_ptr()

bst V2 = mt(); bst V3 = mt(); bst V1 = node(V2, x, V3);

*tp=V1;

case_node_ptr(lp, V4, rp)

intptr_t n = *V4;

PAWNS_bool V5 = leq(x, n);

switch_PAWNS_bool(V5)

case_PAWNS_true_ptr()

bst_insert_du(x, lp); return;

case_PAWNS_false_ptr()

bst_insert_du(x, rp); return;

end_switch()

end_switch()

}

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 18 / 21

Conclusion

For most code we want to ignore details of how values are represented

But sometimes we want destructive update of shared structures

Its not easy to reconcile these two views

Sharing analysis can find bounds on the effects of destructive update

Pawns uses a combination of annotations (concerning mutability),
pre-conditions and post-conditions (concerning sharing)

This clarifies the appropriate level of abstraction, documents important
invariants and allows many potential errors to be detected by the compiler

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 19 / 21

Binary search tree insertion benchmark

Language DU? other coding details time

Pawns yes 1.10
C yes 2.20
MLton yes uses ref 3.28
Haskell yes uses STRef 4.80

MLton no 7.44
MLton no uses ref 10.70
C no iterative, GC MALLOC, no free 15.44
Pawns no 16.25
Haskell no uses ‘seq‘ for strictness 21.75
C no iterative, malloc, free 21.85
C no iterative, GC MALLOC, GC FREE 22.13
C no recursive, malloc, free 28.61
Haskell no no ‘seq‘ 51.36

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 20 / 21

What sharing and type analysis proves

For all functions f , if the precondition of f is always satisfied

1 for all function calls and assignment statements in f , any live variable
that may be updated at that point is annotated with “!”,

2 there is no update of live “abstract” variables when executing f ,

3 all parameters of f which may be updated when executing f are
declared mutable in the type signature of f ,

4 the union of the pre- and post-conditions of f abstracts the return
state plus the values of mutable parameters in all intermediate states,

5 for all function calls and assignment statements in f , any live variable
that may be directly updated at that point is updated with a value of
the same type or a more general type, and

6 for all function calls and assignment statements in f , any live variable
that may be indirectly updated at that point only shares with
variables of the same type or a more general type.

Naish, Lee (Melbourne Uni.) Pawns: a declarative/imperative language March 31, 2016 21 / 21

