
Taming global variables in Pawns

Lee Naish
Computing and Information Systems

University of Melbourne

tinyurl.com/pawns-lang

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 1 / 18



Have you ever wanted to. . .

Modify a set of functions/procedures to

pass in an extra value (eg, a flag),

pass in and return extra values (eg, current and final values of a
counter),

add a diagnostic write, or

use a global variable?

Use IO in a declarative language?

Design a declarative language?

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 2 / 18



IO changes state, implicitly or explicitly

In imperative languages IO changes state implicitly

Declarative languages expose the semantics, so state changes are naturally
explicit

However, making everything explicit results in a lot of clutter

It makes code hard to write, modify and read

So syntactic sugar and other mechanisms are introduced to make state
changes implicit again (and not just for IO)

Plus various methods to distinguish data structures which are
single-threaded through the computation: monads (Haskell), unique types
(Clean), unique modes (Mercury), sharing analysis (Mars), . . .

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 3 / 18



Haskell uses monads and “do” notation

echo_char = do c <- getChar; putChar c

echo_char = getChar >>= putChar

The type of the instance of >>= reveals some of what has been made
implicit

(>>=) :: IO Char -> (Char -> IO ()) -> IO ()

Passing multiple forms of state and converting from non-monadic code to
monadic code are painful

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 4 / 18



Mercury uses DCG and state variable notation

echo_char(!IO) :- get_char(C, !IO), put_char(C, !IO).

echo_char --> get_char(C), put_char(C).

Both are syntactic sugar for

echo_char(IO_0, IO_2) :-

get_char(C, IO_0, IO_1), put_char(C, IO_1, IO_2).

State variable notation is convenient for multiple forms of state but still
somewhat verbose and argument order can be an issue

The pairs of arguments and their types and modes are generally made
explicit in declarations

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 5 / 18



Pawns uses state variables (not Mercury)

State variables are declared independently of functions

They have a name and a type, which must be a (mutable) ref

!io :: ref(iotype). % defined internally in Pawns

Functions are declared to use them as “implicit” arguments and/or results

In the definition of such functions they can be used and updated

Calls to such functions must be prefixed with “!”

echo_char(v) = {

c = !get_char(void);

!put_char(c)

}.

echo_char(v) = { !putchar(!getchar(void)) }.

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 6 / 18



Operations on state

State can be

Created and written/initialized with a value

Read, returning the current value

Written/updated with a new value

Pawns function declarations say which operations the function performs

wo (write only): the variable must be given a value

ro (read only): the variable may be read (used) but not
written/updated

rw (read write): the variable may be read and also written

Semantically, the value is returned from the function, passed to the
function, or both

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 7 / 18



Examples

get_char :: void -> int

implicit rw io.

put_char :: int -> void

implicit rw io.

!counter :: ref(int).

init_counter :: int -> void

implicit wo counter.

init_counter(n) = {*counter = n}.

add_to_counter :: int -> void

implicit rw counter.

add_to_counter(n) = {*!counter := *counter + n}.

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 8 / 18



Examples (cont.)

type tree ---> empty ; node(tree, int, tree).

% Adds all nodes in tree to counter

count_tree :: tree -> void

implicit rw counter.

count_tree(t) = {

cases t of {

case empty:

return

case node(l, n, r):

!count_tree(l);

!add_to_counter(n);

% !count_tree(r) % version 1

!add_to_counter(sum_tree(r)) % version 2

} }.

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 9 / 18



Examples (cont.)

% Returns sum of nodes in tree

% Type signature guarantees it is purely declarative

sum_tree :: tree -> int.

sum_tree(t) = {

% counter undefined here

!init_counter(0); % binds counter

!count_tree(t); % uses/updates counter

*counter % returns final counter value

}.

Use of state is encapsulated

The recursive call to sum_tree from count_tree does not affect the
state of count_tree

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 10 / 18



Implementation

Pawns state variables are not syntactic sugar for extra arguments

A state variable is a (tamed) global/static variable

Functions where it is declared implicit use it directly (with restrictions on
updating); the explicit ref is optimized away

Functions where it is not declared implicit but which call a wo function
save and restore its value using a local variable

Thus count_tree uses a static variable for the counter rather than an
extra argument and return value. It is saved and restored using the stack
frame for sum_tree

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 11 / 18



Implementation (cont.)

intptr_t counter_VALUE;

#define counter (&counter_VALUE)

void init_counter(intptr_t n);

void add_to_counter(intptr_t n);

void count_tree(tree t);

intptr_t

sum_tree(tree t) {

intptr_t _OLDVAL_counter= *counter;

intptr_t V1 = 0;

init_counter(V1);

count_tree(t);

intptr_t V3 = *counter;

*counter = _OLDVAL_counter;

return(V3);

}

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 12 / 18



Pros and cons

+ Very easy to add extra state etc

+ Argument order etc not an issue

+ Diagnostic writes by ignoring “io undefined” errors

+/− Programmers think about global state

+/− Simple implementation uses fewer registers

− Need for wo functions; could support eg, !counter = 0

− Semantics not quite so clear

− Code less flexible (based on state variable names, not just their
types), including higher order

− Type checking for higher order a bit more complicated

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 13 / 18



Summary

Relatively minor changes to global variables “tame” them

Encapsulate use of state inside “pure” code

Creation/initialization of state important

Stack/auto variables can be used to save/restore state instead of
storing current value

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 14 / 18



Discussion

Questions/Comments . . . ?

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 15 / 18



Higher order/type checking

map_counter::(A->B implicit rw counter) -> list(A) -> list(B)

implicit rw counter.

map_counter(f, xs) = {

cases xs of {

case nil:

nil

case cons(x, xs1):

cons(!f(x), !map_counter(f, xs1))

}

}.

mc1 :: list(int) -> list(void)

implicit rw counter.

mc1(xs) = !map_counter(!add_to_counter, xs).

% mc1(xs) = !map_counter(!get_counter, xs).

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 16 / 18



Semantics (ignoring update details)

!s :: s_t.

frw :: a_t -> r_t implicit rw s.

fro :: a_t -> r_t implicit ro s.

...

x = frw(a);

y = fro(a);

% ==================>

frw :: pair(a_t,s_t) -> pair(r_t,s_t). % arg is mutable!

fro :: pair(a_t,s_t) -> r_t.

...

v123 = frw(pair(a,s_42)); % s_42 is value of s here

x = fst(v123);

s_43 = snd(v123); % s_43 is value of s here

y = fro(pair(a,s_43));

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 17 / 18



Single threading (or not)

Global variables are naturally single-threaded

In Pawns we can have aliases for state variables but the sharing analysis of
Pawns means any use/update of state variables is explicit

counter_alias :: void -> ref(int) implicit ro counter

sharing counter_alias(v) = r

pre nosharing

post r = counter. % must have alias in postcondition

counter_alias(v) = counter.

smash_counter :: int -> void

implicit rw counter. % must be rw

smash_counter(n) = {

ca = !counter_alias(void);

*!ca := n !counter}. % update of counter made explicit

Naish, Lee (Melbourne Uni.) Taming global variables in Pawns November 29, 2015 18 / 18


