
A brief overview of the Pawns
programming language

Lee Naish

University of Melbourne, Melbourne 3010, Australia
dr.lee.naish@gmail.com,

https://lee-naish.github.io/

August 20, 2024

Abstract. Pawns is a programming language under development which
supports pure functional programming (including algebraic data types,
higher order programming and parametric polymorphism) and impera-
tive programming (including pointers, destructive update of shared data
structures and global variables), integrated so each can call the other and
with purity checked by the compiler. For pure functional code the pro-
grammer need not understand the representation of the data structures.
For imperative code the representation must be understood and all ef-
fects and dependencies must be documented in the code. For example, if
a function may update one of its arguments, this must be declared in the
function type signature and noted where the function is called. A single
update operation may affect several variables due to sharing of repre-
sentations (pointer aliasing). Pawns code requires all affected variables
to be annotated wherever they may be updated and information about
sharing to be declared. Annotations are also required where IO or other
global variables are used and this must be declared in type signatures
as well. Sharing analysis, performed by the compiler, is the key to many
aspects of Pawns. It enables us to check that all effects are made obvious
in the source code, effects can be encapsulated inside a pure interface
and effects can be used safely in the presence of polymorphism.
Keywords: functional programming language, destructive update, muta-
bility, effects, algebraic data type, sharing analysis

1 Introduction

This paper briefly describes the main features Pawns, a programming language
that is currently under development. The aim is to convey a feel for the gen-
eral ideas; [1] does the same but includes significantly more detail, discussion
of language design issues and citation of related work. We assume the reader is
familiar with Haskell and C. Pawns supports pure functional programming with
strict evaluation, algebraic data types, parametric polymorphism, and higher
order programming. It also supports “impure” code, such using state (including
IO) and destructive update of all compound data types via pointers (references
or “refs” for short) but all such code is highlighted by “!” annotations. A call to

2

a function that relies on state must be prefixed by “!”; the details of the state(s)
are declared in the type signature. Additionally, variables that are updated must
be prefixed with “!”. A function call with no “!” is guaranteed to behave as a
pure function, though Pawns allows impurity to be encapsulated (and checked
by the compiler), so the function may be implemented using impure features.
The representations of different variables can be shared, so updating one variable
may also update other variables and the Pawns compiler checks that all relevant
variables are annotated with “!” at that point in the source code: Pawns is an
acronym for “Pointer assignment without nasty surprises” and its most impor-
tant (and complex) innovation is the way update of shared data structures is
supported and how pure and impure code can be mixed. Impure programming in
Pawns can be like programming in C, with destructive update of fields of structs
representing ADT values and performance equal to or better than portable C.
However, there no unsafe operations (such as dereferencing possibly NULL point-
ers, casts, acessing fields of unions, etc) and all interractions/dependencies due
to sharing must be documented in annotations/declarations.

The rest of this paper is structured as follows. Section 2 gives a simple exam-
ple of pure functional programming. Section 3 describes how destructive update
is done in Pawns and gives some information about data representation. Section
4 gives a two examples of code using destructive update in Pawns, mentioning
sharing of data structures but deferring the details of how sharing is handled.
Section 5 discusses the distinction between data structures that can be simply
viewed as abstract values (typical in pure code) and those for which sharing
must be understood (a necessity when destructive update is used). Section 6
discusses how sharing and destructive update information is incorporated into
Pawns type signatures and the kind of sharing analysis done by the compiler.
Section 7 presents how IO and other forms of “state” can be used in Pawns. Sec-
tion 8 discusses a Pawns feature that allows renaming of functions so different
type signatures can be given, overcoming some of limitations of polymorphism,
particularly for impure Pawns code. Section 9 briefly discusses some of the ad-
ditional complications surrounding safety in Pawns. Section 10 concludes.

2 Pure functional programming example - BST creation

Consider the task of converting a list of integers into a binary search tree. Pawns
supports typical pure functional programming solutions such as Figure 1, pre-
sented using Haskell-like syntax1. Note the use of polymorphic algebraic data
types and the polymorphic higher order function foldl; Pawns does not cur-
rently support type classes or existential types.

An advantage of this style of programming that it is not necessary to under-
stand how values are represented in order to write and reason about the code.
However, bst_insert_pure builds a new node at each level of the tree visited
so it is much less efficient (a factor of around twenty in our experiments) than

1 Pawns currently only supports a temporary syntax, to avoid decisions on syntax and
the need to write a parser

3

-- polymorhic List type (actually built in)

data List t = Nil | Cons t (List t)

type Ints = List Int

data BST = Empty | Node BST Int BST

-- convert list of integers to BST (pure code)

list_bst_pure:: Ints -> BST

list_bst_pure xs =

foldl bst_insert_pure Empty xs

-- insert integer into a BST to give new BST

-- (pure; re-builds a path from root to a leaf)

bst_insert_pure:: BST -> Int -> BST

bst_insert_pure t0 x =

case t0 of

Empty ->

Node Empty x Empty

(Node l n r) ->

if x <= n then

Node (bst_insert_pure l x) n r

else

Node l n (bst_insert_pure r x)

-- standard library foldl for lists

foldl:: (b -> a -> b) -> b -> List a -> b

foldl f y xs =

case xs of

Nil ->

y

(Cons x xs1) ->

foldl f (f y x) xs1

Fig. 1. BST creation using pure code

4

just using destructive update when a leaf is reached. BST creation is unlikely to
be a major time component of any application but we will use this as a simple
example of how destructive update can be used in Pawns.

3 Representation and destructive update of values

The key thing to note about data representation and update in Pawns is that
arguments of data constructors are stored in main memory and these are the
only things that can be updated. The data constructors themselves are like
pointers (they may be a pointer plus a “tag” or, for data constructors with
no arguments, they may just be a small integer). The list (Cons 42 Nil) is
represented as a pointer to two memory cells, containing the integer 42 and a
small number that represents Nil, respectively - the same as a linked list in C.
Similarly, a BST is represented essentially using pointers to structs with three
fields. For types that have more than one data constructor with arguments (such
as the cord data structure discussed in Section 4) the representation uses tags
and is more efficient than portable C code; see [2] for details. Pawns allows the
kind of programming we can do in C with pointers to structs and assignment
to fields of structs. There is also additional flexibility because an ADT can have
any number of data constructors with arguments (which is like having a pointer
to any number of different struct types) and any number of data constructors
with no arguments (like have any number of different NULL values) and all
operations are safe (no dereferencing of NULL values, no casts, et cetera).

Pawns variables are not names for memory locations that can be updated
— it is not possible to assign to an existing variable or get a “pointer to a
variable” as you can in C. However, the representation of the value of a variable
may have mutable components. For example, a variable whose value is (Cons

42 Nil) will always be a Cons pointer to the same two memory cells but the
content of these cells can potentially be updated, changing the overall value of
the variable. All update is done via special pointer (ref) types (similar to STRef

in Haskell and ref in ML). There is a polymorphic Ref t type that is a pointer
to a memory cell containing a value of type t. You can think of the memory cell
as the argument of the data constructor for the Ref type, thus it can be updated.
However, Pawns code never uses an explicit data constructor for refs but instead
just uses a dereference operator, “*”, like C. If x is a Pawns expression of type
Ref t then *x is the value of type t that x points to. There are no NULL refs.

The simplest way to create a ref is by using a let binding with * prefixing
the let-bound variable. The “let” and “in” keywords of Haskell are not required
in Pawns and “;” is used for sequencing, thus x = 42; *xp = 42 creates two
variables, the first of which equals 42 and the second points to a newly allocated
memory cell containing 42 (similar to the Haskell monadic code x <- newSTRef

42, or an ML let expression with x = ref 42). Destructive update is done by
dereferencing a pointer on the left of the “:=” (assignment) operator. All vari-

5

ables2 that are affected must be prefixed by “!”. Typically there will be a pointer
variable on the left (so *xp := ... is written *!xp := ...) but there may also
be other variables that share its representation; these can be annotated with “!”
at the right of the statement. Figure 2 has a simple example.

x = 42; -- let binding of x to 42

*xp = x; -- xp points to a new memory cell containing 42

yp = xp; -- yp points to the same memory cell

y = *yp; -- y is the contents of the memory cell (42)

*!xp := 43 !yp; -- update what xp points to (also affects yp!)

z = *yp -- z is the contents of the memory cell (43)

Fig. 2. Destructive update via a ref

Without the “!y” annotation, both y and z would be bound to *yp with no
intervening occurrence of yp in the code, yet they end up with different values.
This is typical of the potentially confusing “surprises” encountered in languages
that support code for destructive update with pointer aliasing and shared data
structures, which is needed for many important algorithms. Pawns supports such
code but insist the programmer documents sharing and effects, in a way that
can be checked by the compiler.

Just as prefixing a variable with * in a let binding creates a pointer variable,
the same can be done with pattern bindings. These “dereference patterns” are
an important innovation of Pawns. For example, the code for bst_insert_pure
could be rewritten as in Figure 3. Instead of the pattern matching with a Node

creating variables of type BST and Int, it creates variables of type Ref BST and
Ref Int, which are pointers to the arguments of the Node data constructor.
Refs are created but no extra memory cells are allocated and no monads or
changes to the BST type are required; there is no equivalent in languages such as
Haskell and ML. The subsequent code simply dereferences the pointers to obtain
the same values as before and the code is pure — refs/pointers themselves do
not introduce impurity. However, such pointers could potentially be used to
destructively update the Node arguments (which is impure).

4 Destructive update examples

We now give two short examples of using destructive update in Pawns. The first
is an alternative way to construct a BST and the second is an example where
the sharing of data structures is more complex. Building a BST from a list of
integers can be done very efficiently by first allocating a memory cell contain-
ing an empty BST then repeatedly traversing down the tree and destructively

2 More precicely, all live variables; those which are never used again can generally be
ignored.

6

bst_insert_pure_p t0 x =

case t0 of

Empty ->

Node Empty x Empty

(Node *lp *np *rp) -> -- creates refs/pointers to Node arguments

if x <= *np then

Node (bst_insert_pure_p *lp x) *np *rp

else

Node *lp *np (bst_insert_pure_p *rp x)

Fig. 3. BST insertion using pure code with pointers

inserting the next integer as a new leaf — see Figure 4. Both foldl_du and
bst_insert_du simply return void because the tree is updated in situ but be-
cause of the destructive update (they are not pure functions), Pawns insists more
information is provided in their type signatures; we will discuss this in Section
6. However, list_bst_du behaves as a pure function, indistinguishable from
list_bst_pure, even though it is defined in terms of impure functions (and is
far more efficient). To construct the BST it is necessary to consider low level
details such as the representation of the tree and any sharing present but after
it is returned from list_bst_du it can be treated as an abstract BST value and
safely used by pure code. We are not aware of other functional programming
languages that can encapsulate destructive update in this way.

In the second example we use another form of tree, for representing cords.
Cords are data types which support similar operations to lists, but concatenation
can be done in constant time. A common use involves building a cord while
traversing a data structure then converting the cord into a list in O(N) time,
after which the cord is no longer used. Here we use a simple cord design: a
binary tree containing lists at the leaves and no data in internal nodes. Creating
a cord from a list plus append and prepend operations can all be done simply
by applying data constructors.

To convert such a cord to a list, a purely functional program would typically
copy each cons cell in each list. A C programmer is likely to consider the following
more efficient algorithm, which destructively concatenates all the lists without
allocating any cons cells or copying their contents. For each list in the tree other
than the rightmost one, the NULL pointer at the end of the list is replaced with
a pointer to the first cell of the next list; the first list is then returned (note this
destroys the cord). This algorithm can be coded in Pawns – see Figure 5. The
cord_list function creates a pointer to an empty list and calls cord_list_a,
which traverses the cord, updating this list (and the cord), then the list is re-
turned. cord_list_a is recursive and is always called with a pointer to a Nil,
which is updated with the concatenated lists from the cord, and it returns a
pointer to the Nil in the updated list. For now we assume there are only lists of
Ints (we will briefly discuss impurity and polymorphism in Section 9.1).

7

list_bst_du:: Ints -> BST

list_bst_du xs =

*tp = Empty; -- allocate mem cell; init to Empty

foldl_du bst_insert_du !tp xs -- repeatedly insert element

bst_insert_du tp x = -- returns (), *tp updated

case *tp of

Empty ->

*!tp := Node Empty x Empty -- insert new node, return ()

(Node *lp n *rp) ->

if x <= n then

(bst_insert_du !lp x) !tp -- update lp (and tp!)

else

(bst_insert_du !rp x) !tp -- update rp (and tp!)

foldl_du f y xs = -- returns (), y updated

case xs of

Nil -> () -- return ()

(Cons x xs1) ->

f !y x; -- y updated by f

foldl_du f !y xs1 -- y updated further

Fig. 4. BST creation using destructive update

Compared to pure coding, this kind of coding is complicated and prone to
subtle bugs and assumptions (thus best avoided except where the added effi-
ciency is important). It may seem that there are several redundent “!” annota-
tions but the Pawns compiler will complain without them. For example, in the
first recursive call to cord_list_a, with xc1, the compiler insists that xc2 is
annotated. Although the analysis done by the compiler is unavoidably conserva-
tive and sometimes results in false alarms, in this case it is correct. It is possible
the lists in the two branches of the cord may share representations and if this
is the case a cyclic list is created and the code does not work! The same can
occur if cord_list_a is called with xc and np sharing, instead of np pointing
to an independent Nil. The compiler insisting on extra annotations hopefully
alerts the programmer to these subtleties, leading to better documentation and
defensive coding to avoid the potential bug.

5 Purity and abstraction

The distinction between pure and impure code can be blurred. For example,
some “impure” code can be given “pure” semantics by introducing/renaming
variables, adding function arguments et cetera. However, Pawns makes a differ-
ent important distinction, between data structures that are “abstract” (values
for which the representation is not important and may not be known) versus
“concrete” (where the representation, including sharing, may be important and

8

data Cord = Leaf Ints | Branch Cord Cord

-- convert list to cord

list_cord xs = Leaf xs

-- append two cords

cord_app xc1 xc2 = Branch xc1 xc2

-- append list to cord

cord_app_list xc xs = Branch xc (Leaf xs)

-- prepend list to cord

cord_prep_list xs xc = Branch (Leaf xs) xc

-- convert cord to list by efficiently smashing all the lists together -

-- what could possibly go wrong?...

cord_list xc =

*xsp = Nil; -- pointer to empty list of Ints

np = cord_list_a !xc !xsp; -- smash all the lists together

*xsp -- return (smashed) list

-- np points to Nil. We smash this list by appending all the lists in xc.

-- We return a ptr to the Nil at the end of the resulting list.

cord_list_a xc np =

case xc of

(Leaf xs) ->

*!np := xs !xc!xs; -- smash Nil with xs

lastp np -- return ptr to Nil of updated np

(Branch xc1 xc2) ->

np1 = (cord_list_a !xc1 !np) !xc!xc2; -- append left subtree

(cord_list_a !xc2 !np1) !xc!np -- append right subtree

-- returns pointer to the Nil of *xsp

lastp xsp =

case *xsp of

Nil -> xsp

(Cons _ *xsp1) -> lastp xsp1

Fig. 5. Cord operations using destructive update

9

should be understood by the programmer). Only concrete data structures can
be updated. Abstract data structures are normally associated with pure code
and concrete data structures with impure code but this is not always the case.

Consider the lastp function of Figure 5. It takes a pointer to a list, has no
effects and always returns a pointer to Nil, so in that sense it is pure (note
that pointers themselves are not impure). However, for the destructive update
code that uses lastp, it matters which Nil is pointed to in the result. If lastp
allocated a new memory cell, initialised it to Nil and returned a pointer to
this Nil, the result would be identical from an abstract perspective but the
cord_list code would not work. Thus although lastp can be considered pure,
it must work with concrete data structures. Similarly, impure functions can have
abstract arguments and/or results (they cannot update abstract arguments but
may update other arguments).

When a data structure is created by applying a data constructor to concrete
arguments, the result is concrete. Concrete data structures can become abstract
when they are returned from a function (depending on the type signature of the
function) or if they are blended with abstract data structures. For example, if
the Nil of a concrete list is updated with an abstract list or Branch is applied
to one or more abstract cords the result is abstract. Pawns uses the sharing
system to keep track of the distinction between abstract and concrete (see Sec-
tion 6). Pure code such as that in Figure 1 can be written without considering
data representation or sharing, but values returned from these functions will be
abstract and thus cannot be be updated. Although lastp of Figure 5 is pure,
the type signature must contain explicit sharing information because we need a
concrete list pointer to be returned — the representation is important and the
data structure is intended to be updated elsewhere.

6 Sharing analysis

The Pawns compiler does sharing analysis [3] to approximate how variables
share components of their representations and determine what variables may be
updated at each point during evaluation of each function f. It relies on knowing
what sharing may exist between arguments in calls to f, what sharing may exist
between arguments and results of functions called by f and what arguments of
these functions may be updated. Type signatures in Pawns code have additional
information to help this analysis. Specifically, they declare which arguments may
be updated, plus a “precondition” stating what sharing between arguments may
be present when the function is called and a “postcondition” stating what ad-
ditional sharing may be present beween arguments plus the result when the
function returns. As well as the compiler checking there are sufficient “!” anno-
tations, it checks that whenever a function is called the precondition must be
satisfied and when a function returns the postcondition must be satisfied. Declar-
ing this additional information is a burden but it forces the programmer to think
about sharing in data structures that may be updated, documents sharing for
others reading or maintaining the code and helps the compiler conduct analysis

10

to check when destructive update can safely be encapsulated inside pure code
and used in the presence of polymorphism. Preconditions can also be used to
make code more robust. For example, they can be used to declare that no shar-
ing should exist between the arguments of cord_list_a or the functions that
build cords, cord_app cord_app_list and cord_prep_list. Code where such
sharing exists will then result in a compiler error message instead of incorrect
runtime behaviour.

Abstract data structures share with a special pseudo-variable named abstract
(there are different versions of this variable for different types et cetera). For a
function that contains no explicit information concerning sharing, the default
precondition and precondition specify maximal possible sharing, including shar-
ing with abstract. There is no restriction on calls to such functions (preconditions
are always satisfied) but results share with abstract. Code that attempts to up-
date a variable that shares with abstract results in a compiler error. Similarly,
passing an abstract data structure to a function that expects a concrete data
structure result in an error. The data structure will share with abstract but that
will be at odds with precondition of the function.

A function that has no sharing declared can return a concrete data struc-
ture. The implicit postcondition just specifies possible (not definite) sharing with
abstract. This allows code such as the definition of list_bst_du, where the in-
terface is pure and abstract but the implementation uses destructive update of a
concrete data structure. As a general rule in programming, if a possibly shared
data structure is updated, the programmer should understand how it has been
used, all the way back to the points where it was created. In Pawns, this must
be documented in the code, by explicit declarations whenever it is passed to or
returned from a function, and these declarations are checked by the compiler.
At some later point we are free to treat it as an abstract value and not concern
ourselves with how it is represented or what may share with it, but if this is done
the value should not be updated further. In Pawns, this is achieved by explicitly
or implicitly adding sharing with abstract.

Sharing is declared by augmenting type signatures with a pattern that matches
variables with the arguments and result of a function and pre- and post-conditions
that can use these variables. The pattern can also prefix arguments by “!” to
indicate the argument may be updated. Pre-conditions can use the arguments
of the function (and abstract) to declare the maximal sharing allowed when
the function is called. Post-conditions can use also use the result and declare
what additional sharing may be added during evaluation of the function. The
keyword nosharing is used to indicate no sharing. Equations and other Pawns
code (but not function calls) can be used to indicate sharing between variables
or components of variables — see Figure 6.

The declaration for list_bst_du here is equivalent to the declaration in
Figure 4 but the sharing with abstract is made explicit. For the other BST

construction code there is no sharing. Integers are atomic; with a more complex
data type for elements there would generally be sharing between the list and tree
elements and this would need to be declared. Note that even with no sharing,

11

list_bst_du:: Ints -> BST -- explicit version of previous code

sharing list_bst_du xs = t

pre xs = abstract

post t = abstract

bst_insert_du:: Ref BST -> Int -> ()

sharing bst_insert_du !tp x = v

pre nosharing

post nosharing

foldl_du::

(Ref BST -> Int -> ()

sharing f !xtp x = v

pre nosharing

post nosharing

) -> Ref BST -> Ints -> ()

sharing foldl_du f !xtp1 xs = v

pre nosharing

post nosharing

lastp:: Ref Ints -> Ref Ints

sharing lastp xsp = np

pre nosharing

post np = xsp

list_cord :: List -> Cord

sharing list_cord xs = xc

pre nosharing

post xc = Leaf xs

cord_list:: Cord -> Ints

sharing cord_list !xc = xs

pre nosharing

post xc = Leaf xs

cord_list_a:: Cord -> Ref Ints -> Ref Ints

sharing cord_list_a !xc !np0 = np

pre xc = Leaf *np0

post np = np0

cord_app_list :: Cord -> List -> Cord

sharing cord_app_list xc xs = xc1

pre nosharing -- If xs shares with lists in xc, list_cord breaks!

post xc1 = inferred

Fig. 6. Type signatures with sharing

12

it needs to be declared, along with the fact that the BST is updated, otherwise
sharing with abstract would be assumed and no update allowed. This applies
equally to higher order arguments such as that in foldl_du.

The declarations for the cord code illustrate sharing of variables and their
components. Components of variables are discussed further below. For lastp,
the postcondition states that the result, np, and the argument, xsp, may be equal
(and hence share all components). For list_cord, the postcondition states the
result, xc, may be a Leaf whose argument is xs, the argument of the function.
This is exactly what the function returns but, due to the imprecision discussed
below, it means the argument of any Leaf data constructor in xc may equal
xs. This more general interpretation is required for cord_list. Similarly, for
cord_list_a, the precondition means a Leaf data constructor argument of the
cord may equal the list pointed to by the second argument. The precondition of
cord_app_list prevents it introducing sharing between different lists in a cord,
allowing the compiler to reject code that has the bug mentioned earlier (the
same should be done for other cord construction functions). The postcondition is
inferred from the function definition — this is supported in Pawns for definitions
that are pure and contain no function calls (potentially, all postconditions could
be inferred but we feel this would detract from the philosophy of Pawns, which
makes sharing obvious in the source code wherever it must be understood by
programmers).

Sharing analysis is unavoidably imprecise but it is conservative, generally
over-estimating the amount of sharing. Potentially, code may need to have more
sharing declared than is actually the case and more variables annotated with “!”.
For each type, the sharing analysis uses a domain that represents the memory
cells that can be used for variables of that type in the running program. For
recursive types, the actual number of memory cells can be unbounded, but “type
folding” is used to reduce it to a finite number. The domain distinguishes the
different arguments of different data constructors but where there is recursion
in the type, the potential nested components are all collapsed into one. For
example, for lists, there is a component for the head of the list and another for
the tail of the list but because lists are defined recursively, the head component
represents all elements of the list (all memory cells that are the first argument
of a Cons in the list representation) and the tail represents all tails.

For cords, there are five components: the two arguments of Branch, the ar-
gument of Leaf and the two arguments of Cons. Each left or right branch of a
cord is a cord and type folding makes the five components of the branches the
same as the top level cord. Thus for cord_app_list, the all five components of
xc1 may share with the respective components of xc, along with the two com-
ponents representing Cons arguments sharing with the respective components of
xs. Sharing analysis keeps track of what components may exist for each variable.
For example, if a list variable is known to be Nil it has no components at that
point in the sharing analysis. Also note that for two components to share, they
must have the same type and, unless they are pointers, the same enclosing data
constructor and argument. For example, the argument of a Leaf cannot be the

13

same memory location as the second argument of a Cons and sharing analysis
respects this distinction. However, we can have a pointer that points to either of
these locations, thus sharing analysis treats pointers/refs differently from other
data constructors.

7 IO and state variables

Like destructive update, IO does not fit easily with pure functional program-
ming. Pawns models IO by using a value, representing the state of the world,
which is conceptually passed in and returned from all computations that perform
IO. Rather than explicitly using an extra argument and a tuple for results, io is
declared as “implicit” in the type signature of functions (and nothing is actually
passed around). Pawns allows other “state variables” to be defined and (concep-
tually) passed around in the same way. In function type signatures, they can be
declared as “ro” (read only — as if they are passed in as an argument to the
function), “wo” (write only — as if they are initialised/bound by the function
and returned) or “rw” (read and written). The io state variable is bound before
the main function of a Pawns program is called and all the primitive IO functions
have implicit rw io in their type signatures; other state variables must be ex-
plicitly bound/initialised before being used. The state variable feature of Pawns
is designed so that pure functional semantics could be defined. However, calls
to functions with implicit arguments/results must be prefixed by ! to highlight
the fact than there is more going on in the code than meets the eye, whether
or not it is considered pure. State variables are declared like type signatures of
functions except they are prefixed with ! and must have a Ref type (they point
to a statically allocated memory cell and can be used for destructive update like
other pointers). They can only be used in code after a wo function has been
called or in functions where they are declared implicit in the type signature.

Figure 7 gives a simple example of summing the elements in a BST us-
ing a state variable nsum instead of passing additional arguments and results.
Although bst_sum behaves as a pure function, as the type signature implies, in-
ternally it uses init_nsum to bind/initialise the state variable, which is updated
as bst_sum_sv traverses the BST and then its final value is returned. State vari-
ables are similar to mutable global variables in a language such as C but the code
makes it clear when the variables may be used/updated and they can be encap-
sulated in a purely functional interface. For example, although bst_sum_sv calls
bst_sum (which zeros nsum before traversing the right subtree), Pawns ensures
this does not interfere with the nsum value in the outer computation.

Functions can have multiple state variables declared as implicit arguments
with no additional complications. There is no ordering required for the state
variables, making some coding simpler compared to mechanisms other languages
use for threading multiple kinds of state in a pure way (such as nested monads in
Haskell). A disadvantage of using state variables is the code is harder to re-use
because it is tied to specific state variables rather than types. State variables and
their components can share and be updated in the same way as other Pawns

14

bst_sum:: BST -> Int -- sum of integers in a BST (pure interface)

bst_sum t =

!init_nsum 0; -- like nsum = 0

!bst_sum_sv t; -- like nsum’ = bst_sum_sv t nsum

*nsum -- like nsum’

!nsum:: Ref Int -- declares state variable, nsum

init_nsum:: Int -> ()

implicit wo nsum -- binds/initialises/writes nsum

init_nsum n =

*nsum = n

bst_sum_sv:: BST -> () -- adds all integers in BST to nsum

implicit rw nsum -- reads and writes nsum

bst_sum_sv t =

case t of

Empty -> ()

(Node l n r) ->

*!nsum := *nsum + n; -- adds n to nsum

!bst_sum_sv l; -- adds ints in l (could do same for r)

*!nsum := *nsum + (bst_sum r) -- uses encapsulated impurity

Fig. 7. Summing the nodes in a BST using a state variable

variables. The only additional restriction is that a state variable (or its alias)
must not be passed to code where the state variable is undefined (for example,
be passed as an argument or returned as a result of a function where the state
variable is not declared as an implicit argument). Thus bst_sum in Figure 7 can
return *nsum but not nsum itself, even if the return type and/or the type of nsum
was changed.

8 Polymorphism and renaming

Sharing in Pawns is not polymorphic to the same extent as types. Similarly, code
that uses a state variable is specific to that state variable rather than something
more general such as the monad type class in Haskell. For a function such as
foldl, the second and third arguments do not have identical types declared and
Pawns does not allow any sharing to be declared between them. However, for
some calls to foldl the types may be identical and we may want to declare
sharing between them. In Pawns, this can only be done by using a separate
function definition that has a more specific type signature with identical types
and the sharing declared. Pawns provides a mechanism for renaming groups of
functions to simplify this. As an example, Figure 8 shows how the code of Figure
1 code can be duplicated, making it possible to add different type signatures

15

where the sharing is declared and hence the resulting tree can be updated3.
The first renaming declaration creates definitions of list_bst_concrete and
bst_insert_concrete, by renamining the previous definitions and replacing the
call to foldl by a call to foldlBST. An explicit definition of foldlBST could be
included but we here simply use another renaming declaration. Type signatures
are needed for all three functions (for brevity we just include one). Renaming can
also be used as a less abstract alternative to higher order code and for producing
code with the same structure but with different state variables. For example, we
can code a version of map that uses io and rename it to use other state variables
as needed (this is the Pawns equivalent of using Haskell’s mapM).

renaming

list_bst_concrete = list_bst_pure

bst_insert_concrete = bst_insert_pure

with

foldlBST = foldl

-- same effect as just deleting the "with" above

renaming

foldlBST = foldl

-- also need type signatures for list_bst_concrete and foldlBST

bst_insert_concrete:: BST -> Int -> BST

sharing bst_insert_concrete xt x = xt1

pre nosharing

post xt1 = xt

Fig. 8. Renaming of function definitions

9 Complications

Combining pure functional programming with destructive update and other im-
purity is not simple! The design of Pawns aims to support high level pure func-
tional programming plus low level imperative programming with as much flex-
ibility as possible while avoiding unsafe operations (such as dereferencing NULL

pointers) and “surprises” (code with effects that are obscure). Here we briefly
mention some of more complicated issues and how they are dealt with in Pawns,
without too much technical detail.

3 There is little advantage in having both abstract and concrete versions of these
functions but it does illustrate renaming

16

9.1 Polymorphism and type safety

Mixing polymorphic types with destructive update can result in unsafe opera-
tions if it is not done carefully. Consider the code in Figure 9. The variable xsp
is bound to a pointer to Nil, a list of any type. Without destructive update,
this can be safely used where pointers to lists of integers and pointers to lists of
binary search trees are expected (the type can be instantiated to either of these
without problems). However, if the variable is updated to be a non-empty list
of integers the code is not type safe — an integer may appear where a tree is
expected. Other functional languages solve the type safety problem by imposing
restrictions on code that has refs (and thus may perform updates). In Pawns,
refs to arguments of data constructors can be created anywhere, but because the
source code explicitly notes where variables can be updated, the problem can be
solved in a more flexible way.

Where a Pawns variable with a polymorphic type is assigned to or passed
to a function that may update it, type variables may become more instantiated
during type checking. For example, at the point where xsp is passed to int_fn in
Figure 9, its previous polymorphic type (Ref (List t)) is instantiated to Ref

(List Int). The type of xsp1 is also similarly instantiated — the two variables
share their representations and their types shared the same type variable, t. The
subsequent call to bst_fn then results in a type error. Pawns treats all variables
created with polymorphic types as live throughout the whole function, so the !
annotation on xsp is required even if xsp is never used again, alerting readers
of the source code to a subtlety. The compiler also prints a warning when types
are further instantiated. Warnings can be avoided by adding explicit casts, as
shown in the second example of Figure 9 (a previous version of the compiler did
not automatically instantiate types and this cast was required).

*xsp = Nil; -- Nil is a list of any type

xsp1 = xsp; -- xsp1 has the same polymorphic type as xsp

ys = (int_fn !xsp) !xsp1; -- int_fn accepts a ref to list of ints

-- Now *xsp (and *xsp1) may be a non-empty list of ints!

zs = bst_fn *xsp1; -- OOPS! bst_fn accepts a ref to list of BSTs

cord_list xc =

*xsp = Nil::Ints; -- instantiate list type explicitly

np = cord_list_a !xc !xsp; -- xsp has a monomorphic type

*xsp

Fig. 9. Potential violation of type safety

9.2 Higher order programming

There are two complications involving higher order code: type checking and
partially applied functions (closures). Type checking is made more complicated

17

because each “arrow” type has additional information concerning sharing, de-
structive update and state variables. Pawns allows some latitude when matching
the type of arguments to higher order functions with the expected type that is
declared. The arguments are allowed to have less destructive update, less shar-
ing in postconditions, more sharing in preconditions and some variations in what
state variable operations are declared (for example, ro is acceptable where rw is
declared). The intention is to allow as much flexibility as possible while guaran-
teeing safety.

Pawns allows functions to be applied to fewer than the declared number of
arguments, resulting in closures being constructed/returned. Closures can be
passed around like other data and later applied, leading to function evaluation.
The arguments inside closures can share with other data structures and hence
they can potentially be updated. Pawns allows the patterns used for declaring
sharing to have additional arguments, representing the arguments of closures, so
sharing of data within closures can be declared and analysed. Certain equivalence
laws that hold for pure functional programming (such as “eta-equivalence”) do
not apply when sharing is significant and there may be destructive update.

put_char: Int -> ()

implicit rw io

put_char i = as_C "{putchar((int) i);}"

-- pseudo-random number sequence interface

init_random:: int -> () -- initialize sequence with a seed

implicit wo random_state

random_num:: () -> int -- return next number in sequence

implicit rw random_state

Fig. 10. C interface

9.3 Foreign language interface

The one feature of Pawns where there is no attempt to guarantee safety is
the foreign language interface. Pawns compiles to C and provides a simple and
flexible interface to C, which has many unsafe features. Each Pawns function
compiles to a C function and Pawns allows the body of a function definition
to be coded in C but for such code there can be no guarantees of safety or
lack of “surprises”. It is up to the programmer to ensure the C code is safe
and compatible with the Pawns type signature. For example, Figure 10 gives
the implementation of put_char defined in terms of putchar in C. The use of
the io state variable in the type signature ensures that the code can only be
used in a context where the side-effect is clear and purely functional semantics
could be defined. Similarly, it only requires a few lines of code to interface Pawns

18

to the C standard library pseudo-random number package in a way that can be
encapsulated and given purely functional semantics, using a state variable — see
Figure 10 for the type signatures. It is also very easy to support arrays via the C
interface; the current code has no bound checks (and thus has C-like efficiency
but is not safe).

Most foreign language interfaces only allow basic unstructured types to be
passed. However, the Pawns compiler uses the adtpp tool [2], which generates
C macros for manipulating the algebraic data types defined in the program.
For example, Pawns code that defines the BST type results in C macros for
creating an Empty tree, creating a Node and various ways of testing if a tree
is Empty or a Node and extracting the arguments of the Node. These macros
can be used in hand-written C code to both operate on a BST that was created
by Pawns code, and create a BST that is passed back to Pawns code. Dynamic
memory management is often particularly difficult across language boundaries
but is made very easy in Pawns by using the Boehm-Demers-Weiser conservative
garbage collector.

10 Conclusion

There are important algorithms which rely on destructive update of shared data
structures, and these algorithms are relatively difficult to express in declarative
languages and are typically relatively inefficient. The design of Pawns attempts
to overcome this limitation while retaining many of the advantages of a typi-
cal functional programming language, such as algebraic data types, parametric
polymorphism, and higher order programming. Pawns supports the creation of
pointers to arguments of data constructors, and these pointers can be used for
destructive update of shared data structures. There are several features which
restrict when these effects can occur and allow them to be encapsulated, so the
abstract declarative view of some functions can still be used, even when they
use destructive update internally.

Type signatures of functions declare which arguments are mutable and for
function calls and other statements, variables are annotated if it is possible that
they could be updated at that point. In order to determine which variables could
be updated, it is necessary to know what sharing there is. Functions have pre-
and post-conditions which describe the sharing of arguments and the result when
the function is called and when it returns. To avoid having to consider sharing
of data structures for all the code, some function arguments and results can
be declared abstract (this is the default). Reasoning about code which only uses
abstract data structures can be identical to reasoning about pure functional code,
as destructive update is prevented. Where data structures are not abstract, lower
level reasoning must be used — the programmer must consider how values are
represented and what sharing exists. The compiler checks that declarations and
definitions are consistent, allowing low level code to be safely encapsulated inside
a pure interface. Likewise, the state variable mechanism allows a pure view of
what are essentially mutable global variables, avoiding the need for source code

19

to explicitly give arguments to and extract result from function calls. Analysis of
sharing is also required to ensure the use of state variables can be encapsulated
and to ensure safety of code that uses destructive update of polymorphic data
types.

Although Pawns is still essentially a prototype, and is unlikely to reach full
maturity as a “serious” programming language, we feel its novel features add
to the programming language landscape. They may influence other languages
and help combine the declarative and imperative paradigms, allowing both high
level reasoning for most code and the efficiency benefits of destructive update of
shared data structures.

Acknowledgements

The design of Pawns has benefitted from discussions with many people. Bernie
Pope and Peter Schachte particularly deserve a mention.

References

1. Naish, L.: An informal introduction to Pawns: a declarative/imperative language.
https://lee-naish.github.io/papers/pawns/pawns.pdf (2015)

2. Naish, L., Schachte, P., MacNally, A.: Adtpp: lightweight efficient safe polymorphic
algebraic data types for C. Software Practice and Experience (2016)

3. Naish, L.: Sharing analysis in the Pawns compiler. PeerJ Computer Science 1(e22)
(2015)

