
Sharing analysis in the Pawns compiler

Lee Naish
Computing and Information Systems

University of Melbourne

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 1 / 23



Pawns: What and why

What: Pawns (tinyurl.com/pawns-lang) is another take on combining
declarative and imperative programming

Why: Some things in declarative languages are much slower and more
cumbersome than they should be

Pawns supports the typical strict functional programming style but also
allows you to get pointers to possibly shared data structures and
destructively update them

The language and compiler support expression and analysis of
sharing/alias information so that impurity can be encapsulated

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 2 / 23



Outline

Motivation

Pawns features

Core Pawns

Sharing analysis overview

Sharing analysis abstract domain

Sharing analysis algorithm

Conclusion

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 3 / 23



Binary search tree insertion

The efficient, dangerous way: pointers and destructive update

void bst_insert_du(long x, tree *tp) {

while(*tp) {

if (x <= (*tp)->data)

tp = &(*tp)->left;

else

tp = &(*tp)->right;

}

*tp = malloc(sizeof(struct tree_node));

(*tp)->left = NULL;

(*tp)->data = x;

(*tp)->right = NULL;

}

Time to insert 30000 elements: 2.22s
Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 4 / 23



Binary search tree insertion

The inefficient, safe way: reconstruct the path down the tree

data Bst = Empty | Node Bst Int Bst

bst_insert :: Int -> Bst -> Bst

bst_insert x t0 =

case t0 of

Empty -> Node Empty x Empty

(Node l n r) ->

if x <= n then

Node (bst_insert x l) n r

else

Node l n (bst_insert x r)

Time to insert 30000 elements: 51.36s
With STRef (destructive update): 4.80s

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 5 / 23



Binary search tree insertion

Language DU? other coding details time

Pawns yes 1.10
C yes 2.20
MLton yes uses ref 3.28
Haskell yes uses STRef 4.80

MLton no 7.44
MLton no uses ref 10.70
C no iterative, GC MALLOC, no free 15.44
Pawns no 16.25
Haskell no uses ‘seq‘ for strictness 21.75
C no iterative, malloc, free 21.85
C no iterative, GC MALLOC, GC FREE 22.13
C no recursive, malloc, free 28.61
Haskell no no ‘seq‘ 51.36

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 6 / 23



Pawns binary search tree insertion

type bst ---> empty ; node(bst, int, bst).

bst_insert_du :: int -> ref(bst) -> void

sharing bst_insert_du(x, !tp) = v

pre nosharing post nosharing.

bst_insert_du(x, tp) = {

cases *tp of {

case node(*lp, n, *rp):

if x <= n then

bst_insert_du(x, !lp) !tp

else

bst_insert_du(x, !rp) !tp

case empty:

*!tp := node(empty, x, empty)

} }.

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 7 / 23



Pawns binary search tree building

list_bst :: list(int) -> bst.

list_bst(xs) = {

*tp = empty;

list_bst_du(xs, !tp);

*tp }.

list_bst_du :: list(int) -> ref(bst) -> void

sharing list_bst_du(xs, !tp) = v

pre xs = abstract post nosharing.

list_bst_du(xs, tp) = {

cases xs of {

case cons(x, xs1):

bst_insert_du(x, !tp);

list_bst_du(xs1, !tp)

case nil: void }}.

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 8 / 23



Summary of Pawns features

Functional programming with algebraic data types, refs/pointers

Pointers to arguments of data constructors can be obtained by pattern
matching

Pointers to values can be obtained, but not pointers to variables

Assignment via pointers; mutability of function arguments declared; live
variables annotated where they may be updated

Pawns = Pointer Assignment Without Nasty Surprises

Sharing declared in pre- and post-conditions of functions; can share with
“abstract” (unknown/any sharing, update not allowed)

Not covered here: “state variables” (like global variables but impurity also
encapsulated)

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 9 / 23



Core Pawns

An early pass of the compiler eliminates nested expressions etc

data Stat = -- Statement, eg

Seq Stat Stat | -- stat1 ; stat2

EqVar Var Var | -- v = v1

EqDeref Var Var | -- v = *v1

DerefEq Var Var | -- *v = v1

DC Var DCons [Var] | -- v = cons(v1, v2)

Case Var [(Pat, Stat)] | -- cases v of {pat1:stat1 ...}

Error | -- (for uncovered cases)

App Var Var [Var] | -- v = f(v1, v2)

Assign Var Var | -- *!v := v1

Instype Var Var -- v = v1::instance_of_v1_type

data Pat = -- patterns for case, eg

Pat DCons [Var] -- case cons(*v1, *v2)

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 10 / 23



Sharing (and type) analysis: the aim

For all functions f , if the precondition of f is always satisfied

1 for all function calls and assignment statements in f , any live variable
that may be updated at that point is annotated with “!”,

2 there is no update of live “abstract” variables when executing f ,

3 all parameters of f which may be updated when executing f are
declared mutable in the type signature of f ,

4 the union of the pre- and post-conditions of f abstracts the return
state plus the values of mutable parameters in all intermediate states,

5 for all function calls and assignment statements in f , any live variable
that may be directly updated at that point is updated with a value of
the same type or a more general type, and

6 for all function calls and assignment statements in f , any live variable
that may be indirectly updated at that point only shares with
variables of the same type or a more general type.

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 11 / 23



Abstract interpretation domain

We abstractly interpret each function, starting with the precondition

The abstract domain is a set of pairs of variable components which may
share, including “self sharing”

Variable components are paths from the top level of a value to the
argument of a data constructor; recursive types are “folded” (function fc)
to get a finite number of components

type maybe(T) ---> just(T); nothing.

type either(A, B) ---> left(A); right(B).

type list(T) ---> cons(T, list(T)); nil.

x of type maybe(either(bool, int)) has components x.[just.1],
x.[just.1,left.1] and x.[just.1,right.1]

ys of type list(int) has components ys.[cons.1] and ys.[]

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 12 / 23



Abstract domain example

type rtrees = list(rtree).

type rtree ---> rnode(int, rtrees).

rtrees components: [], [cons.1] and [cons.1,rnode.1]

rtree components: [], [rnode.1] and [rnode.2]

t = rnode(2, nil);

ts = cons(t, nil)

t = rnode 2 nil

ts = cons rnode nil

{{t.[rnode.1], t.[rnode.1]}, {t.[rnode.2], t.[rnode.2]},

{ts.[], ts.[]}, {ts.[cons.1], ts.[cons.1]},

{ts.[cons.1,rnode.1], ts.[cons.1,rnode.1]},

{t.[rnode.1], ts.[cons.1,rnode.1]}, {t.[rnode.2], ts.[]}}

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 13 / 23



Abstract interpretation of Seq, EqVar, DerefEq

alias (Seq stat1 stat2) a0 = -- stat1; stat2

alias stat2 (alias stat1 a0)

alias (EqVar v1 v2) a0 = -- v1 = v2

let

self1 = {{v1.c1, v1.c2} | {v2.c1, v2.c2} ∈ a0}
share1 = {{v1.c1, v .c2} | {v2.c1, v .c2} ∈ a0}

in

a0 ∪ self1 ∪ share1

alias (DerefEq v1 v2) a0 = -- *v1 = v2

let

self1 = {{v1.[ref.1], v1.[ref.1]}} ∪
{{fc(v1.(ref.1 :c1)), fc(v1.(ref.1 :c2))} | {v2.c1, v2.c2} ∈ a0}

share1 = {{fc(v1.(ref.1 :c1)), v .c2} | {v2.c1, v .c2} ∈ a0}
in

a0 ∪ self1 ∪ share1

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 14 / 23



Abstract interpretation of Assign

alias (Assign v1 v2) a0 = -- *v1 := v2

let

al = {va.ca | {v1.[ref.1], va.ca} ∈ a0}
-- (check annotations, sharing with abstract)

self1al = {{fc(va.(ca++c1)), fc(vb.(cb++c2))} |
va.ca ∈ al ∧ vb.cb ∈ al ∧ {v2.c1, v2.c2} ∈ a0}

share1al = {{fc(va.(ca++c1)), v .c2} |
va.ca ∈ al ∧ {v2.c1, v .c2} ∈ a0}

in if v1 is a mutable parameter then

a0 ∪ self1al ∪ share1al

else let

-- old1 = old aliases for v1, which can be removed

old1 = {{v1.(ref.1 :d : c1), v .c2} |
{v1.(ref.1 :d : c1), v .c2} ∈ a0}

in (a0 \ old1) ∪ self1al ∪ share1al

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 15 / 23



Assign example 1

Initial state
t = rnode 2 nil

ts = cons rnode nil

v1 = ref

v3 = ref

v2 = rnode 3 cons

rnode nil

4 nil

After *!v1 := v2 !ts!v3

t = rnode 2 nil

ts = cons rnode nil

v1 = ref

v3 = ref

v2 = rnode 3 cons

rnode nil

4 nil

ts, v1, v3 and v2 sharing added

v1 and t sharing removed

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 16 / 23



Assign example 2

Initial state
v1 = ref

v2 = cons 3 cons

v3 = cons 4 nil

After *!v1 := !v2
v1 = ref

v2 = cons 3 cons

v3 = cons 4 nil

v1 and v3 sharing removed then added again

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 17 / 23



Abstract interpretation of App (ignoring closures)

alias (App v f [v1, . . . vN]) a0 = -- v = f(v1...vN)

let

-- (check renamed precondition and annotations)

mut = the arguments that are declared mutable

post = renamed postcondition + precondition for mut

pt = {{x1.c1, x3.c3} | {x1.c1, x2.c2} ∈ post ∧ {x2.c2, x3.c3} ∈ a0}
pm = {{x1.c1, x2.c2} | {x1.c1, vi .c3} ∈ a0 ∧ {x2.c2, vj .c4} ∈ a0 ∧

{vi .c3, vj .c4} ∈ post ∧ vi ∈ mut ∧ vj ∈ mut}
in

a0 ∪ pt ∪ pm

Note: the precondition for non-mutable arguments is not added

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 18 / 23



App example 1

Initial state

x = ref

1 2

v1 = Pair ref ref

y = ref ref ref

After f1(!v1) !x!y

x = ref

1 2

v1 = Pair ref ref

y = ref ref ref

Mutable argument components are proxies for everything they share with

f1 :: pair(ref(ref(int)), ref(ref(int))) -> void

sharing f1(!v1) = r

pre nosharing post *a = *b; v1 = pair(a, b).

f1(v1) =

cases v1 of {case pair(rr1, rr2): *rr1 := *rr2 !v1}.

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 19 / 23



App example 2

Initial state

v1 = ref ref ref 1

v2 = ref ref ref 2

x = ref

y = ref

After f2(!v1, !v2) !x!y

v1 = ref ref ref 1

ref 10

v2 = ref ref ref 2

ref 20

x = ref

y = ref

f2 can be written so that v1 and v2 never share during the execution

f2 :: ref(ref(ref(int))) -> ref(ref(ref(int))) -> void

sharing f2(!v1, !v2) = v pre nosharing post **v1 = **v2.

f2(v1, v2) = {*r10 = 10; *rr10 = r10; *r20 = 20; *rr20 = r20;

rr1 = *v1; rr2 = *v2; *!v1 := rr10; *!v2 := rr20;

*rr1 := *rr2 !v1!v2}.

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 20 / 23



Abstract interpretation of other cases

Function applications can result in closures that contain data structures
which can be shared and updated

Case statements can remove some sharing for each branch but lose some
precision due to the possibility of cyclic structures

See the paper for details

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 21 / 23



Implementation status

Implementation in Prolog, standard set library used (binary search trees),
no work done on optimisation

Speed seems fine, though no stress testing done - analysis and translation
of Pawns to C is faster than compilation of C

Various bugs discovered when the paper was written; not yet fixed

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 22 / 23



Conclusion

Destructive update via pointers to possibly shared data is efficient but
hard to incorporate nicely into declarative languages

You can have destructive update of algebraic data types without adding
explicit refs or similar to the data type

Such destructive update can be encapsulated inside a pure interface

The main cost (and also benefit) in Pawns is extra declarations and
annotations concerning sharing and mutability in the code

The extra analysis in the compiler is complicated but seems to be possible
with acceptable efficiency

Naish, Lee (Melbourne Uni.) Sharing analysis in the Pawns compiler October 18, 2015 23 / 23


