
Statements versus predicates in spectral bug localization

Lee Naish, Hua Jie Lee, Kotagiri Ramamohanarao
Computer Science and Software Engineering

University of Melbourne
Melbourne, Australia

Email: {lee, leehj, rao}@csse.unimelb.edu.au

Abstract—This paper1 investigates the relationship between
the use of predicate-based and statement-based program spec-
tra for bug localization. Branch and path spectra are also
considered. Although statement and predicate spectra can be
based on the same raw data, the way the data is aggregated
results in different information being lost. We propose a simple
and cheap modification to the statement-based approach which
retains strictly more information. This allows us to compare
statement and predicate “metrics” (functions used to rank the
statements, predicates or paths). We show that improved bug
localization performance is possible using single-bug models
and benchmarks.

Keywords-bug localization, program spectra, statements,
branches, predicates, paths

I. I NTRODUCTION

Bugs are be pervasive in software under development
and tracking them down contributes greatly to the cost of
software development. One of many useful sources of data
to help diagnosis is the dynamic behavior of software as it is
executed over a set of test cases where it can be determined
if each result is correct or not (each test case passes or
fails). Software can be instrumented automatically to gather
data (known as program spectra [1]), such as the statements
that are executed or predicates that are true, for each test
case. If a certain statement is executed in most failed tests
but few passed tests we may conclude it is likely to be
buggy. Similarly, if some predicate such asx < 0 is true
at a particular program point in most failed tests but few
passed tests it may also help a programmer locate a bug.
Generally the raw data is aggregated in some way to get data
for each statement or predicate and some function (we use
the termmetric) is used to rank the statements or predicates
according to how likely they are to be buggy (or associated
with bugs). A programmer can then use this information
to help find a bug. This paper primarily investigates the
relationship between these statement-based and predicate-
based approaches to bug localization. We make the following
contributions:

• We show that although the raw data collected with
both approaches is the same, the way that it is aggre-

1A paper substantially similar to this will probably appear in
APSEC2010. If so, the copyright will be owned by the IEEE.

gated loses information. Different information is lost
in the different approaches, with the statement-based
approach losing more information in some sense.

• We present a simple cheap heuristic way of extracting
some predicate spectra from statement spectra. This
is practically important because there are many pro-
filing tools available which provide statement spectra,
whereas obtaining predicate information is often more
difficult. Although our method is not completely accu-
rate, it provides enough additional information to be
useful and we discuss ways accuracy can be improved
further.

• We show that retaining predicate spectra can theoreti-
cally improve performance of bug localization. We use
a previously proposed model-based methodology where
a particular statement-based metricOp was proven
optimal for locating bugs in a simple class of single-
bug programs. Using a similar model we propose new
predicate-based metrics which perform better thanOp

and much better than previously proposed predicate-
based metrics.

• We also report on practical experiments where the new
metrics perform very well. Our experiments allow a
fair comparison between several different metrics and
show that previously proposed predicate-based metrics
perform relatively poorly.

The rest of the paper is organized as follows. Section II
provides the necessary background on spectra-based diag-
nosis. Section III shows how the raw data collected is the
same with the two approaches but differs when the data
is aggregated. Section IV shows how predicate spectra can
be cheaply approximated using statement spectra. Sections
V and VI give performance figures for a theoretical model
and commonly used benchmark sets. Sections VII and VIII
discuss results from the CBI and Holmes systems, including
the use of branch and path spectra, and other related work.
Section IX discussed further work and Section X concludes.

II. BACKGROUND

All spectral methods use a set of tests, each classified
as failed or passed. For statement spectra [2], [3], [4],
[5], which we describe first, we gather data on whether



Table I
STATEMENT SPECTRA WITH TESTST1 . . . T5

T1 T2 T3 T4 T5 f p fn pn

Statement1 1 0 1 1 1 1 3 1 0
Statement2 1 1 0 1 0 2 1 0 2
Statement3 0 1 0 1 1 1 2 1 1

...
Test Result 1 1 0 0 0 F = 2, P = 3

each statement is executed or not for each test. This can
be represented as a binary matrix with a row for each
statement and a column for each test; 1 means executed and
0 means not executed. For each statement, four numbers
are ultimately produced. They are the numbers of failed
and passed test cases in which the statement was executed
(f and p) and failed and passed test cases in which the
statement was not executed (fn and pn). Table I gives an
example with five tests, the first two of which fail. Statement
metrics (numeric functions used to rank the statements) are
a measure of how similar the rows of the matrix are to the
result vector, or how similar the set of failed tests is to theset
of tests which execute the statement. Measures of similarity
are important in classification and machine learning, not
just debugging, and scores of different metrics have been
proposed (see [5]). Most commonly they are defined in terms
of these four values. However, due to our use of predicate
spectra as well, it is simplest for us to define them using
p, f and the total number of failed and passed tests,F and
P , respectively (this is possible becausefn = F − f and
pn = P − p).

Table II gives definitions of the statement metrics used
here. Due to space limitations we focus on metrics which
have been previously used for software diagnosis and intro-
duce them very briefly ([5] provides more background). The
Jaccard metric is the oldest and was originally used for clas-
sifying plants [6]; it has been used in the Pinpoint debugger
[7]. The Russell (and Rao) metric [8] is also quite old; we
include it because it is related to some metrics for predicate
spectra. The Tarantula system [2] was the first spectra-based
debugger. Ochiai, Jaccard, Ample and Tarantula metrics have
been evaluated for diagnosis using the Siemens test suite
[9]; the Ample metric was adapted from the AMPLE bug
localization system [10]. The Zoltar metric [11] has been
proposed for debugging as an enhancement to Jaccard, and
Wong3 is the best of several metrics proposed for debugging
in [4]. Op is one of a class of metrics which are proved to
be theoretically optimal for some single-bug programs [5]
(we discuss this work further in Section V).

For predicate spectra [12], [13] we collect data on pred-
icates, such as the conditions of if-then-else statements.
As well as collecting data related to control flow (branch
spectra), other predicates can also be instrumented. For

example, whether the return value of a function is negative,
zero or positive is often important, and predicates can be
introduced to test this. Similarly, when a variable is assigned
a value, predicates can be introduced to compare it to other
related variables and constants of the same type. For each
test it is determined if execution ever reaches that program
point (the predicate is reached, or “observed”) and whether
the predicate is ever true. As with the statement-based
approach, for each predicate we ultimately compute four
integers: the numbers of failed and passed tests in which
the predicate was observed (f ′ andp′) and the numbers of
failed and passed tests tests in which the predicate was true
(f and p; we relate these to thef and p for statements in
Section III). Predicate metrics are applied to these valuesin
the same way as statement metrics in order to rank predicate
according to how closely they are associated with a bug.

Table III gives the definitions of the predicate metrics we
use. The first two rows are based on the CBI (Collaborative
Bug Isolation) system [12]. The simplest metric used in CBI
is Increase, defined in terms of Failure and Context. Context
is the proportion of tests which fail, of all the tests which
observe the predicate. Failure is the proportion of tests which
fail, of the tests where the predicate is true. The difference
betweeen these values (Increase) may ituitively indicate how
closely the predicate being true is associated with a bug. CBI
has also used two other metrics, Log and Sqrt, which are
the harmonic mean of Increase and another value based on
the proportion of failed tests for which the predicate is true
(FP). One uses logarithms (Log) and the other square roots
(Sqrt) to attempt to reduce the influence of FP. Failure is
equivalent to Tarantula and FP is equivalent to Russell for
ranking purposes [5].

The last row defines our three new metrics. The first,
FPC, adds Context to Failure rather than subtracting it. Our
experiments suggest this performs significantly better than
Increase, indicating the intuition behind Increase has dubious
merit. The next two, OFPC and O8FPC, are variations of
OPC based on the understanding of optimal metrics for
single bug programs. The optimal metrics discussed in [5]
rank primarily on f and secondarily on−p (or 1/p). If
we ignore f ′ and p′ (or they have the same values for
all predicates, so Context is constant) OFPC and O8FPC
have the same property, and are therefore optimal in the
same sense asOp. However, they both give some weight
to Context: the same weight as Failure in OFPC and one
eight the weight of Failure in O8FPC. We currently have
little theoretical understanding of the multiple bug case,
so we cannot say whether the predicate-based approach is
theoretically better than the statement-based approach for
multiple bugs. Hence we make single bugs our intial focus
in comparison and evaluation.



Table II
DEFINITIONS OF STATEMENT METRICS USED

Name Formula Name Formula Name Formula

Jaccard f

F+p
Tarantula

f
F

f
F

+
p
P

Ample
∣

∣

f

F
− p

P

∣

∣

Ochiai f√
F∗(f+p)

Zoltar f

F+p+
10000F−f∗p

f

Russell f

F+P

Wong3 f − h, whereh =

{

p if p ≤ 2
2 + 0.1(p − 2) if 2 < p ≤ 10
2.8 + 0.001(p − 10) if p > 10

Op f − p

P+1

Table III
DEFINITIONS OF PREDICATE METRICS USED

Name Formula Name Formula Name Formula

Failure f

f+p
Context f ′

f ′+p′ Increase Failure − Context

FP f

F
Log 2

1
Increase

+
log F
log f

Sqrt 2
1

Increase
+

√
F√
f

FPC Failure + Context OFPC 3f + FPC O8FPC 10f + 8Failure + Context

III. R AW DATA AND AGGREGATED DATA

There is no essential difference in the raw data (the binary
matrix) collected from predicates and statements. Consider
the following three lines of code:

1: if (C)
2: T;
3: else E;

Instrumenting the three statements gathers identical infor-
mation to instrumenting predicate C and its negation: both
C and its negation are observed if and only if line 1 is
executed, C is true if and only if line 2 is executed and the
negation of C is true if and only if line 3 is executed. Note
that in general it is possible that T and E are both executed
(C and its negation are both true at some times) because the
statement may be executed more than once in a test.

Given a predicate which is deemed worth instrument-
ing but not used in control flow, it is possible to add a
dummy if-then-else which tests the predicate and has no-
ops in the “then” and “else” branches. If for each predicate
instrumented we have an if-then-else, the raw statement
information contains all the predicate information (assuming
we also know the structure of the program — which rows of
the matrix correspond to which “then” and “else” branches
etc). Similarly, if all conditions in a program which deter-
mine control flow are instrumented, then the raw predicate
information contains all the statement information.

However, although the raw data is the same in both
cases, the way it is aggregated to get four integers for
each statement is different with the two approaches. For
predicates,f and p are the same as thef and p for the
corresponding “then” or “else” statement, butf ′ and p′

are the same as thef and p for the corresponding “if”
statement. Thus information from twodifferent statements
is combined in predicate spectra. For a given set of tests,
F andP are fixed — they don’t vary between statements.
Thus, for a statement metric the only difference between
different statements is thef andp values. There can beF +1
distinct f values (since0 ≤ f ≤ F ) and P + 1 distinct P
values (since0 ≤ p ≤ P ) so the number of distinct possible
argument values for a statement metric is

P
∑

p=0

F
∑

f=0

1 = (P + 1)(F + 1)

For predicates,0 ≤ p′ ≤ P and0 ≤ f ′ ≤ F but, in addition,
f and p can vary between statements:0 ≤ p ≤ p′ and
0 ≤ f ≤ f ′. The number of distinct values is

P
∑

p′=0

F
∑

f ′=0

p′
∑

p=0

f ′
∑

f=0

1

Thus, compared to statement metrics, there are strictly
more possible distinct values for the arguments to predicate
metrics. For example, withF = 5 and P = 15 there are
96 possibilities for statement metrics and 2856 for predicate
metrics.

The predicate approach to aggregation thus maintains
more information, by combining information from different
(though not completely independent) statements in appli-
cations of the metric. The statement approach allows us
to know F and P , which cannot generally be determined
with the predicate approach, so the aggregated predicate
data does not contain all the information of the aggregated
statement data. However, our results indicate thatF andP
are less important than the information obtained from pairs



of statements. Also, it is trivial to computeF and P in
a predicate-based system and allow the metrics to use this
information (in fact, Log and Sqrt in CBI useF ).

It is possible to have a unified view of statement and
predicate spectra by having the two “global” variablesF and
P (which are the same for all program points) as well as
the four predicate spectra variables,f , p, f ′ andp′. Whether
the latter are associated with predicates or statements is
immaterial to the inner workings of a bug localization tool.
Giving a certain rank to a predicate which is the condition
of an if statement is equivalent to giving that rank to the
statements in the “then” branch. Partly due to infrastructure
we have previously developed, we associate the spectra with
statements. Thusf ′ and p′ for a statement in a “then” or
“else” branch are thef andp, respectively, for the associated
“if”. For statements at the top level of a function, where there
is no enclosing conditional, we sayf ′ = f and p′ = p.
This is equivalent to there being an enclosing conditional
which always chooses this branch, and leads to reasonable
default behavior. In the experiments we report on later we
give performance for both statement and predicate metrics;
the only difference is that the statement metrics do not use
f ′ andp′ in their definitions.

IV. PREDICATE SPECTRA FROM STATEMENT SPECTRA

Many profiling tools can be used to extract statement
spectra easily (for example, we have usedgcov, part of
thegcc compiler suite). It is somewhat harder to find tools
which produce predicate spectra. Even when available, it is
often harder to link this data to source code, partly because
we often put more than one predicate on a single line (when
there is a condition which involves conjunction or disjunc-
tion), whereas we rarely put more than one statement on a
single line. It can therefore be useful to combine statement
spectra from different statements in order to reconstruct
predicate spectra. To do this accurately requires knowledge
of the program structure, otherwise it is not clear which pairs
of statements should be combined. Writing and maintaining
a tool which analyses program structure and combines it
with statement spectra is a significant task. Combiningall
pairs of statements is simple but does not scale well (with
N statements there areO(N2) pairs) and most of the pairs
will be unrelated statements and of doubtful use.

The approach we suggest here is to just use pairs of
consecutivestatements, which can be done very easily, and
use heuristics to infer the program structure and hence
compute predicate information. Consider the code segment
below:

1: if (C1) {
2: S2;
3: S3;
4: } else { S4;
5: S5; }

6: S6;

Comparing the statement spectra for statementS1 (line
1) andS2 gives us the predicate information forC1. Also,
assuming statementsS2–S5 do not make the control jump
to outside this if statement (usinggoto, break, return,
etc) the spectra forS6 will be identical toS1. Comparing the
statement spectra forS6 andS5 will thus (usually) give us
the predicate information for the negation ofC1. In general,
if we can recognise the first statement in a “then” branch
and the statement immediately following the end of an “else”
branch we can reconstruct predicate spectra. We know that
both the “then” and “else” branches will be executed no
more than the if statement. The interesting case (where
the predicate information is potentially useful) is when the
“then” or “else” branches are executed strictly less than the
if statement.

We use the following heuristic for recognising “then” and
“else” branches and computingf ′

i andp′i (we use subscripts
on the spectra variables here to denote statement numbers).
If fi ≤ fi−1, pi ≤ pi−1 and eitherfi < fi−1 or pi < pi−1

then we assume statementi is the start of a then block; we set
f ′

i to fi−1 andp′i to pi−1. Otherwise, iffi ≤ fi+1, pi ≤ pi+1

and eitherfi < fi+1 or pi < pi+1 then we assume statement
i is the end of an else block; we setf ′

i to fi+1 andp′i to pi+1.
Otherwise, we setf ′

i to fi andp′i to pi. Recognising “then”
and “else” branches can be done more accurately if we have
access to the whole matrix of raw data: we accurately check
if the tests which executed one statement are a subset of the
tests which execute the previous/next statement (the logic
above approximates this). This has worse space complexity,
but compromises are possible, where we store some extra
information about each row of the matrix rather than the
whole row.

Having determined which statements are at the start of
a “then” block and the end of an “else” block, the spectra
values for these statements should be propagated forwards
(for “then”) or backwards (for “else”) to all statements in
that block. Again, we use a heuristic to determine such
statements. We assume any statement with the samef and
p value is in the block, but stop scanning if we encounter a
statement with strictly greaterf or p value. If we encounter
smaller f or p values we just keep scanning; this is so
we can handle nested if-then-else statements betweenS2

andS3 or betweenS4 andS5, for example. Again, having
access to the matrix of raw data (or a summary) can lead
to greater precision. For example, if we have a hash of
each row stored, we can scan for equal hash values rather
equalf andp values, increasing precision considerably. The
time complexity could also be improved by creating doubly
linked lists of statements with the same hash (orf and
p) values. The figures we provide here are for the simple
algorithm without these improvements.

Algorithm 1 sketches the overall process. We apply this



algorithm for each statement, in order. If the statement has
already had itsf ′ (and p′) computed we do nothing, to
prevent values which are computed when scanning forwards
from being overwritten.

// Computef ′ andp′ for the ith statement,Si,
// (and maybe others) givenf andp values
PredSpectra(i):
begin

if f ′[i] not yet assignedthen
if Si used in less tests thanSi−1 then

// Start of then block (probably)
f ′[i] = f [i-1];
p′[i] = p[i-1];
Scan(i, 1); // scan forwards

end
else if Si used in less tests thanSi+1 then

// End of else block (probably)
f ′[i] = f [i+1];
p′[i] = p[i+1];
Scan(i, -1); // scan backwards

end
else

f ′[i] = f [i];
p′[i] = p[i];

end
end

end
Scan(i, inc):
begin

j = i + inc;
while Sj exists and is not used in more tests than
Si do

if Sj used in same tests asSi then
f ′[j] = f [i];
p′[j] = p[i];

end
j = j + inc;

end
end

Algorithm 1: Computingf ′ andp′ from f andp values

There are several ways in which Algorithm 1 can infer the
program structure incorrectly, but in most cases the spectra
produced are still correct. For example, consider the case
where the “then” branch is used in all tests in which the if
statement is executed but theelsebranch is not. Statements
S1 andS2 are not recognised as a then branch but the default
f ′ and p′ values are what would be computed anyway.S4

andS5 are inferred to be a “then” branch and hence theirf ′

andp′ are thef andp values ofS3, respectively (which are
the samef andp values asS1, the if statement, as desired).
We get a similarly correct result in cases where the “else”
branch is always executed, or there is no else branch. While

and for loops are indistinguishable from if statements since
we only collect binary data, not execution counts. The main
inaccuracy of Algorithm 1 is in the scanning process, where
sometimes scanning proceeds to far and assignsf ′ and p′

values it should not.

V. THEORETICAL PERFORMANCE

To assess performance in idealised conditions we adopt
the model-based approach of [5]. We briefly review it here.
The following very simple program (named ITE2) was used
to model the debugging problem.StatementS4 is buggy;
the others are correct (the choice ofS4 is arbitrary due to
symmetry but the fact there is a single bug is important).

if (C1) S1; else S2;
if (C2) S3; else S4;

S4 is executed in half the tests on average and, of those,
half fail on average (buggy code can behave correctly). The
second if-then-else can be seen as the source of a “signal”
in the data, indicating where the bug is. The fact thatS4

sometimes behaves correctly attenuates the signal. The first
if-then-else is a source of “noise”. Depending on the set of
tests, executions ofS1 or S2 may be correlated with the
tests failing and thus be ranked equal or higher thanS4.
A set of tests corresponds to a multiset of execution paths
through the program, where faulty and correct executions
of S4 are considered distinct paths. Given a multiset of
execution paths, program spectra for the statementsS1–S4

can be generated, the statements ranked according to various
metrics and the performance of the metrics evaluated for that
particular set of tests (the best case is whenS4 ranked strictly
above the other statements).

Given a number of tests,N , all possible multisets ofN
execution paths can be considered in order to evaluate the
overall performance of each metric. For largeN (or large
numbers of paths if we use a program more complicated than
ITE2) there are too many multisets to practically enumerate,
but random sampling from a uniform distribution can be
used to find approximate overall performance. We can also
determine how overall performance is affected by various
factors such as what proportion of tests fail, what proportion
of tests execute the bug and how “consistent” the bug is
(what proportion of the tests which execute the bug fail).

Although the ITE2 model program is very simple, it
accurately predicts relative performance of metrics on “real”
C programs seeded with single bugs. TheOp metric was
proven to be in a class of metrics which areoptimal for
this model, with respect to a simple evaluation measure, for
all numbers of tests (no metric can perform better overall).
Op also performed best on real benchmarks. Although other
enhancements to statement-based spectral debugging have
been made [14], a method which out-performsOp in the
single bug case has been elusive.



In the ITE2 model program, both if statements are always
executed, soContext is constant for a given set of tests.
In such a case it can be shown that the Increase metric
is equivalent to the Tarantula metric for ranking purposes
(in general, Tarantula is equivalent to Failure) [5]: using
the Tarantula metric with statement spectra forS1 – S4

produces identical rankings to using Increase (or Failure)
with predicate spectra forC1, C2 and their negations. In
order to compare the use of predicates and statements for
spectral debugging in a more general setting (where Context
can vary between different statements for a given set of tests)
we used a model with two (symmetric)nestedif-then-else
statements, as follows:

if (C1) {
if (C2) S3; else S4;
S5;

} else
S6;

if (C7) {
if (C8) S9; else S10;
S11;

} else
S12;

S13;

Note that statementsS5, S11, S13 and the if statement
with conditionC7 will have the same statement spectra as
a previous if statement; they enable us to compute predi-
cate information from statement information of consecutive
statements. In our experiments we picked one of the inner
statements,S3, to be buggy (note that it may not have
the same Context value asS9). We ranked all thirteen
statements, including the if statements. AlthoughOp has not
been proven to be optimal for such a model, it is reasonable
to expect it is optimal and in our experiments no statement-
based metric has performed better for this model.

The performance measure we use isrank percentages,
used by various researchers [3], [4], [5]. This is the rank
of the highest ranked buggy statement, expressed as a
percentage of the program size. For example, if the program
has 100 lines of code and the highest ranked bug is the
tenth in the ranking, the rank percentage is 10% and the
programmer needs to examine 10% of the program code in
order to locate the bug (assuming they follow the ranking).
Lower rank percentages thus mean better performance. If
there are ties in the ranking (several statements, including
the bug, have the same metric value) we take the mid-point.
We use the average over all sets of tests. Table IV gives
“ideal” results (where the structure of the code is known
precisely) in average rank percentages for five, twenty, fifty
and two hundred tests. We included “SLog” and “SSqrt”
which are the same as SLog and SSqrt, respectively, except
they use a constant value forContext. Recall that Tarantula
is equivalent to Failure.

Number of tests 5 20 50 200
Predicate metrics

O8FPC 11.21 8.14 7.74 7.69
OFPC 11.21 8.18 7.75 7.69
FPC 11.96 8.54 7.88 7.71
Log 21.64 10.78 9.04 8.22
Increase 22.16 11.29 9.16 8.22
Sqrt 29.95 11.34 9.10 8.24
Context 21.82 18.03 16.51 15.64

Statement metrics
Op 12.71 8.18 7.75 7.69
Zoltar 12.74 8.20 7.75 7.69
Ochiai 12.74 8.23 7.76 7.69
Jaccard 12.74 8.27 7.78 7.70
SLog 12.78 8.31 7.83 7.72
Ample 16.18 8.33 7.75 7.69
Wong3 15.31 8.44 7.75 7.69
SSqrt 13.19 8.47 7.85 7.76
Tarantula 13.19 8.57 7.88 7.71
Russell 33.52 30.51 28.06 26.96

Table IV
IDEAL RANK PERCENTAGES FOR METRICS WITH MODEL

Num. tests 5 20 50
Heuristic Then Scan Then Scan Then Scan
O8FPC 11.21 12.21 8.14 8.14 7.74 7.74
OFPC 11.21 12.21 8.18 8.11 7.75 7.74
FPC 11.84 13.00 8.53 8.45 7.87 7.86
Log 21.37 13.32 10.82 12.43 9.06 10.03
Increase 22.06 14.22 11.38 13.00 9.18 10.16
Sqrt 30.47 14.02 11.42 12.86 9.13 10.10
Context 25.39 33.10 20.76 16.26 18.33 14.09

Table V
RANK PERCENTAGES USING HEURISTICS WITH MODEL

Table V gives results for the predicate metrics using
heuristics to determine the program structure: “Then” means
just the heuristic for detecting “then” and “else” statements
and “Scan” means the additional scanning to determine the
whole “then” or “else” block. Neither heuristic affects the
statement metrics because they don’t usef ′ or p′. Since there
are only single statements in “then” and “else” the scanning
is not necessary for this model, it just makes inference of
the program structure less accurate, if anything.

We have done some experimentation with similar models
to help validate these results and gain a deeper understand-
ing, but more is desirable. As expected, the best of the state-
ment metrics isOp. However, the best of these metrics over-
all is the predicate metric O8FPC, followed by OFPC. This
is the first time a spectral debugging method has been shown
to be superior toOp for single bug programs. Thus the
additional information retained can increase performance. It
is not yet known how much performance gain is possible,
since we don’t know what the optimal predicate metric is.
The previously proposed predicate metrics (essentially based
on Context, Tarantula and Russell) do not perform well and
FPC is significantly better than Increase (it even beatsOp

for small numbers of tests).



All the best metrics rank statement primarily onf and
give a small negative weight top (the condition for op-
timality given in [5]). Without thep component we have
(the equivalent of) the Russel metric, which performs much
worse. The weight given tof ′ andp′ is comparable to that
of p or (in the case of O8FPC) significantly smaller. Thus
it seems that the most important information is captured by
the statement spectra (or, equivalently, whether predicates
are true). The information retained exclusively by predicate
spectra (whether the predicate has been observed) is signif-
icantly less important but still a useful refinement.

For large numbers of tests the performance of the better
metrics converges to 7.69 (1/13, which is the best possible
value since there are thirteen statements). For Context,S3

andS4 are always equally ranked and the performance seems
to converge (slowly) to 2/13. As the number of tests grow
in our model, the results are more dominated by sets of
tests which have a reasonably uniform coverage of different
paths. Real tests suites have much less uniform coverage
and the convergence is slow at best. The performance of
Wong3 is also significantly affected by the number of tests.
Of the three different cases in the definition of the metric
(see Table II) the last gives best performance (it is very
similar to Op). With smaller numbers of tests the first two
cases are used more, particularly with this model, in which
the buggy statement is only executed in a quarter of the tests,
on average.

The heuristic for determining “then” and “else” blocks
works well for reasonable numbers of tests (the model
includes extra statements to help the accuracy of this heuris-
tic). Even for very small numbers of tests, the inaccuracy
ends up not affecting overall performance at all for the better
metrics and the poorer metrics are only affected a little. The
heuristic for scanning blocks results in more performance
variation, particularly for poorer metrics. As we mentioned,
both heuristics can be made more accurate reasonably easily;
we have implemented a version of scanning which uses
the whole binary matrix and this results in a performance
variation of less than 0.06 for all cases in Table V. For
the better metrics, even when the simplest version of both
heuristics are used, the performance is better thanOp.

VI. PRACTICAL PERFORMANCE

We now discuss performance on actual buggy programs.
The main benchmark we use is a combination of the Siemens
Test Suite (STS) and Unix (a collection of Unix utilities)
[15], widely used benchmarks [5], [3], [2], [16]. They consist
of multiple versions of several small C programs seeded
with bugs, along with numerous test cases (1000-6000 for
STS and 150–900 for Unix). We used the same “single bug”
subset of this test suite as in [5]; there are 224 programs
in total. In addition, we used the Concordance benchmark
[17] consisting of 13 programs with “real” bugs (as opposed
to deliberately seeded bugs); we excluded two which have

Metric STS+Unix Concordance
Predicate metrics

OFPC 17.94 9.95
O8FPC 17.94 10.08
FPC 28.24 19.90
Context 30.18 20.00
Log 44.93 49.05
Increase 45.41 50.04
Sqrt 47.01 51.18

Statement metrics
Op 17.86 10.11
Wong3 18.19 10.15
Zoltar 18.23 10.11
Ochiai 21.63 11.19
Jaccard 23.64 17.68
SLog 26.23 19.59
SSqrt 26.77 20.42
Tarantula 27.09 20.03
Ample 30.16 27.53
Russell 30.02 21.03

Table VI
RANK PERCENTAGES WITHSTS+UNIX AND CONCORDANCE

multiple bugs. We usedgcc version 4.2.1 andgcov to
extract program spectra. This gives spectra for all lines of
each program (including blank lines,et cetera); we ignored
lines that were never executed when calculating average
rank percentages. Table VI gives performance figures for
the various metrics with both sets of benchmarks.

Unfortunately, the new predicate metrics were not able to
out-performOp for STS and Unix. However, they perfomed
best for Concordance, and for STS and Unix they performed
better than all metrics other thanOp. With more accurate
heuristics and possibly better predicate metrics there are
good prospects of predicate metrics performing better than
Op overall for single-bug programs. As with the model,
the previously proposed predicate metrics performed poorly.
For Concordance their performance was indistinguishable
from random ranking and for the other benchmark set they
barely performed better. This confirms the suspicions raised
in [5] that these metrics are poorly designed. In [5] the
performance of CBI and various statement metrics was
compared but it was unclear if the comparison was fair due
to significantly different ways of measuring performance.
Our experiments here only use predicates related to branches
but it seems unlikely that relative performance of metrics
varies greatly with the kinds of predicates chosen. Although
the heuristics may affect performance of the predicate
metrics to some degree, it seems clear that the previously
proposed metrics perform more poorly than the comparable
statement metrics with constantContext (SLog, SSqrt and
Tarantula). FPC performs better than Increase and our two
new predicates influenced byOp perform significantly better
still.



VII. R ELATED WORK — CBI AND HOLMES

The main author of the CBI system has subsequently
contributed to the Holmes system [18]. Holmes usespath
profiles (or spectra): sets of statements which form (part
of) an execution path. Only acyclic paths through single
functions are considered, since such information can be
gathered relatively efficiently [19], but this still provides
a significantly richer source of information than single
statements or branches. The raw data for paths contains
strictly more information than the raw data for statements
(Table I). A variant of the predicate spectra methodology
is used to compute four integers for each path, to be used
for ranking. For each passed and failed test, a path can be
executed (like a predicate being true, givingp and f ) or
observed/reached (meaning the first statement in the path is
executed but not the whole path, givingp′ andf ′). The Log
metric from CBI is used for ranking. Instead of producing
the entire ranking, a smaller set of paths is output to indicate
the most likely causes of bugs. The top-ranked path is always
included. If it cannot explain all failed tests (because only
some failed tests executed this path) the remaining failed
tests are used to recompute the ranking of other paths and
the top-most one is added to the set of likely bug indicators.
This is repeated until all failures are explained.

In [18], there is an evaluation of the relative performance
of path spectra, predicate spectra (in the style of CBI) and
branch spectra (the subset of predicates used in control
flow). Because the whole ranking is not produced, a different
way of measuring performance is given. Starting with the
bug indicators, a breadth-first search (BFS) of the program
dependence graph is performed until the actual bug is found.
The number of nodes in the graph examined, expressed as
a percentage of the whole graph, is used as the perfor-
mance indicator (each node corresponds to a basic block
in the code). A graph of the number of bugs found in the
benchmark set versus the percentage of the code examined
is given. As may be expected, path spectra performed best,
followed by predicates then branches. However, the absolute
performance, particularly for branch spectra, is significantly
lower than what we would expect.

When examining 50% of the code, around 9% of bugs
were found using branch spectra, compared with 51% for
predicates and 78% for paths [18]. The benchmark set was
a combination of part of the Siemens test suite plus some
larger programs. Even by randomly guessing bug locations
we should be able to achieve 50% on average. In [20] it was
reported that CBI found 75% of bugs in the Siemens test
suite by examining 50% of the basic blocks in the code. In
[5], by examining 50% of the executed lines of code using
statement spectra (which should be very similar to branch
spectra, as discussed here) 83% of bugs were found using the
SLog metric and 90% were found usingOp (usingO8FPC
andOFPC and the heuristics described in this paper gives

the same figure and using Log gives 54%)). In [18] it is
suggested that the very poor performance for branch spectra
may be due to the fact that some of the programs in the test
suite has previously undergone extensive testing. This may
be true, but here we propose some other possible reasons
for the worse than expected performance.

In [18] there is no statement about how performance is
measured in the case of ties. If ties are reported using the
worst case scenario (where the bug is assumed to be the
last node examined at that level of the BFS) then this will
under-estimate the expected performance. Furthermore, as
performance drops, the under-estimation will tend to worsen.
When performance is very good, the bug will be close to the
bug indicators in the graph, there will be few such nodes and
therefore few nodes in the tie. When performance is worse,
the distance will be greater and (generally) there will be far
more nodes in the tie so gap between the average case and
worst case will be larger. Thus the reported performance may
be significantly worse than the actual average performance.

There is another reason related to the breadth-first search
which may affect actual performance. The reason for using
BFS to evaluate performance is because only a few of the
bug indicators are reported, rather the ranked list containing
all of them. This effectively discards much of the informa-
tion collected dynamically. For example, it may be that there
are several bug indicators with high metric values which
explain all failed tests. The Holmes system would return just
one of them to the user. If it does not indicate the actual
bug location, the user has only static information to fall
back on — the program dependence graph. The performance
measure assumes the user will perform a BFS using this
information. This implicitly gives a ranking to all nodes
(the performance measure gives the rank percentage for
this implicit ranking). Given that the second and subsequent
ranked bug indicators have high metric values, one would
presume this information is more valuable than the static
information, yet Holmes discards it. Returning the whole
ranking, or at least the ranking from bug indicators with
high metrics values, may well lead to better performance.

VIII. O THER RELATED WORK

We now briefly review other related spectral debug-
ging work. The SOBER system [13] is another important
predicate-based spectral debugging system. It uses a non-
binary matrix containing frequency counts (for example,
how often a predicate evaluated to true in a test) rather
than the “binarised” data we use here. The number of times
a predicate is true in each passed test forms a weighting;
similarly for each failed test. Ranking is based on the
evaluation biaswhich is an established statistical measure of
difference between the two weightings for each predicate. It
is difficult to do a direct comparison with approaches which
uses metrics over the (aggregated) binarised data.



The work which resulted in the Wong3 metric has been
extended, and a considerably more elaborate metric has been
proposed [21]. We have not evaluated it here, partly because
it is so complicated and partly because some of our other
experiments suggest it does not perform significantly better
than Wong3 for single-bug programs [22]. In [14] a variation
of the normal ranking method is proposed, for statement
spectra. Each failed test is given a weight, dependent on the
number of statements executed in the test, with smaller num-
bers of statements executed leading to higher weights. Tests
with higher weights have more influence onf andp, which
are real numbers rather than integers. The overall ranking
is computed incrementally, with weights being adjusted at
each stage. For single-bug programs, performance of optimal
metrics is not affected. However, performance is improved
for multiple-bug programs using the best known metrics.
This weighted incremental approach could be adapted to
predicate or path spectra.

IX. FURTHER WORK

For systems which collect statement spectra, our study
indicates potential for improving performance by imple-
menting more accurate heuristics for determining program
structure. Even if accuracy of heuristics remains a stumbling
block, new predicate metrics such as those proposed here are
worth incorporating into systems such as CBI and Holmes
(which always determine the program structure accurately),
since it seems performance can be significantly improved
in this way. Gaining a better understanding of the relative
performance of different systems and methods is also a
priority — currently the literature contains unresolved in-
consistencies.

It is also worth investigating other new predicate metrics.
Previously proposed predicate metrics do not perform par-
ticularly well and we have only briefly experimented with
a few new metrics. Statement metrics attempt to solve the
same problem as as similarity metrics in many other areas
(measuring similarity or distance between two sets or N-
dimensional vectors) hence there is a huge body of relevant
work on such metrics. Predicate metrics are different because
they measure “similarity” between a pair of sets and a single
set. It is harder to get a good intuition for constructing
such metrics. The intuition behind Increase seems flawed,
for example. Finding an optimal class of metrics, even in
the single bug case, may be significantly harder than for
statement metrics because we have more information and
hence more degrees of freedom when designing metrics.

Multiple-bug performance should also be investigated.
Optimal single-bug metrics are rather specialised and don’t
perform particularly well for programs seeded with two
or more bugs [14]. We know of statement metrics which
consistently perform well for multiple bugs (and reasonably
well for single bugs), but it is unclear how they are best

modified to make use of predicate information. We have per-
formed some initial experiments on multiple-bug programs.
We obtained similar poor performance for the previously
proposed predicate metrics but improved the performance
of some excellent statement metrics by adding a multiple
of Context. Experiments on larger benchmarks are also
desirable to see how the approach scales.

X. CONCLUSION

The predicate-based and statement-based approaches to
spectral bug localization collect equivalent raw data from
program executions. However, the way the data is aggre-
gated differs. More information is retained by the predicate
method than the statement method as it combines spectral
information from pairs of program points. We have shown
that this additional information can improve performance
of bug localization. Collecting statement spectra is easier
from a practical perspective due to the availability of various
profiling tools. We have proposed a simple heuristic method
which combines spectra from consecutive statements in
order to reconstruct predicate information.

Experiments using a model-based approach indicate the
heuristics are reasonably accurate and we have indicated
how they can be improved further. We have evaluated several
statement metrics and predicate metrics (which are also used
for path spectra) using this these heuristics. This provided a
reasonably fair comparison between these metrics. Although
previously proposed predicate metrics perform poorly, we
have proposed two new predicate metrics which perform
very well. For a model single-bug program, they achieve
better performance than the best known statement metric,
Op. This is theoretically significant becauseOp is known to
be the best possible statement metric for some models and
is suspected to be the best for the model we chose to use
here. The practical results with single-bug programs are not
as positive, with performance of the best predicate metrics
slightly worse thanOp for the largest benchmark set and
slightly better thanOp for the smaller set. However, with
better heuristics (or analysing program structure precisely)
there is a good prospect of increasing performance. Further-
more, performance of existing systems which use predicate
or path spectra is likely to be significantly improved by
adopting metrics such as those proposed here. Finally, there
is still room to develop even better predicate metrics.

REFERENCES

[1] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program
profiling for software maintenance with applications to the
year 2000 problem,” inProceedings of the 6th European
Conference held jointly with the 5th ACM SIGSOFT. New
York, USA: Springer-Verlag New York, Inc. New York, 1997,
pp. 432–449.

[2] J. Jones and M. Harrold, “Empirical evaluation of the taran-
tula automatic fault-localization technique,”Proceedings of
the 20th ASE, pp. 273–282, 2005.



[3] R. Abreu, P. Zoeteweij, and A. van Gemund, “An evalua-
tion of similarity coefficients for software fault localization,”
PRDC’06, pp. 39–46, 2006.

[4] W. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective Fault
Localization using Code Coverage,”Proceedings of the 31st
COMPSAC, pp. 449–456, 2007.

[5] L. Naish, H. Lee, and K. Ramamohanarao, “A Model for
Spectra-based Software Diagnosis,”Accepted for publication
in TOSEM, 2009.

[6] P. Jaccard, “́Etude comparative de la distribution florale dans
une portion des Alpes et des Jura,”Bull. Soc. Vaudoise Sci.
Nat, vol. 37, pp. 547–579, 1901.

[7] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem determination in large, dynamic internet
services,”Proceedings of the DSN, pp. 595–604, 2002.

[8] P. Russel and T. Rao, “On habitat and association of species
of anopheline larvae in south-eastern Madras,”J. Malar. Inst.
India, vol. 3, pp. 153–178, 1940.

[9] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the Ac-
curacy of Spectrum-based Fault Localization,” inTAICPART-
Mutation 2007. Windsor,UK: IEEE Computer Society, 2007,
pp. 89–98.

[10] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug
localization with AMPLE,” Proceedings of the Sixth sixth
international symposium on Automated analysis-driven de-
bugging, pp. 99–104, 2005.

[11] A. Gonzalez, “Automatic Error Detection Techniques based
on Dynamic Invariants,” Master’s thesis, Delft Universityof
Technology, The Netherlands, 2007.

[12] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan,
“Scalable statistical bug isolation,”Proceedings of the 2005
ACM SIGPLAN, vol. 40, no. 6, pp. 15–26, 2005.

[13] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober:
statistical model-based bug localization,”SIGSOFT Softw.
Eng. Notes, vol. 30, no. 5, pp. 286–295, 2005.

[14] L. Naish, H. J. Lee, and K. Ramamohanarao, “Spectral
debugging with weights and incremental ranking,” in16th
Asia-Pacific Software Engineering Conference, APSEC 2009.
IEEE, December 2009, pp. 168–175.

[15] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact,”Empirical Software Engineering,
vol. 10, no. 4, pp. 405–435, 2005.

[16] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect
of test set minimization on fault detection effectiveness,”
Proceedings of the 17th ICSE, pp. 41–50, 1995.

[17] S. Ali, J. Andrews, T. Dhandapani, and W. Wang, “Eval-
uating the Accuracy of Fault Localization Techniques,” in
Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 2009, pp. 76–87.

[18] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani,
“HOLMES: Effective statistical debugging via efficient path
profiling,” in Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 34–44.

[19] T. Ball and J. Larus, “Efficient path profiling,” inmicro.
Published by the IEEE Computer Society, 1996, p. 46.

[20] L. Jiang and Z. Su, “Automatic isolation of cause-effect
chains with machine learning,” Technical Report CSE-2005-
32, University of California, Davis, Tech. Rep., 2005.

[21] W. Eric Wong, V. Debroy, and B. Choi, “A family of code
coverage-based heuristics for effective fault localization,”
Journal of Systems and Software, 2009.

[22] H. J. Lee, L. Naish, and K. Ramamohanarao, “Effective Soft-
ware Bug Localization Using Spectral Frequency Weighting
Function,” in Proceedings of the 2010 34th Annual IEEE
Computer Software and Applications Conference. IEEE
Computer Society, 2010, pp. 218–227.


