Statements versus predicates in spectral bug localization

Lee Naish, Hua Jie Lee, Kotagiri Ramamohanarao
Computer Science and Software Engineering
University of Melbourne
Melbourne, Australia
Email: {lee, leehj, rag @csse.unimelb.edu.au

Abstract—This paper! investigates the relationship between gated loses information. Different information is lost
the use of predicate-based and statement-based program spe in the different approaches, with the statement-based
tra for bug localization. Branch and path spectra are also approach losing more information in some sense.

considered. Although statement and predicate spectra caneb ! L .
based on the same raw data, the way the data is aggregated « We present a simple cheap heuristic way of extracting

results in different information being lost. We propose a sinple some predicate spectra from statement spectra. This
and cheap modification to the statement-based approach whic is practically important because there are many pro-
retains strictly more information. This allows us to compare filing tools available which provide statement spectra,

statement and predicate “metrics” (functions used to rank he whereas obtaining predicate information is often more
statements, predicates or paths). We show that improved bug

localization performance is possible using single-bug mads difficult. Although our method is not completely accu-
and benchmarks. rate, it provides enough additional information to be

o useful and we discuss ways accuracy can be improved
Keywords-bug localization, program spectra, statements,

branches, predicates, paths further. L) .
« We show that retaining predicate spectra can theoreti-
. INTRODUCTION cally improve performance of bug localization. We use

a previously proposed model-based methodology where
a particular statement-based metd® was proven
optimal for locating bugs in a simple class of single-
bug programs. Using a similar model we propose new
predicate-based metrics which perform better th#n
and much better than previously proposed predicate-
based metrics.

We also report on practical experiments where the new
metrics perform very well. Our experiments allow a
fair comparison between several different metrics and

Bugs are be pervasive in software under development
and tracking them down contributes greatly to the cost of
software development. One of many useful sources of data
to help diagnosis is the dynamic behavior of software as it is
executed over a set of test cases where it can be determined
if each result is correct or not (each test case passes or
fails). Software can be instrumented automatically to gath
data (known as program spectra [1]), such as the statements®
that are executed or predicates that are true, for each test
case. If a certain statement is executed in most failed tests : . .
but few passed tests we may conclude it is likely to be show that pre_zvmusly proposed predicate-based metrics
buggy. Similarly, if some predicate such as< 0 is true perform relatively poorly.
at a particular program point in most failed tests but few The rest of the paper is organized as follows. Section II
passed tests it may also help a programmer locate a bugfovides the necessary background on spectra-based diag-
Genera"y the raw data iS aggregated in some Way to get dafwsis. SeCtion Il ShOWS hOW the raw data CO”eCted iS the
for each statement or predicate and some function (we usg@me with the two approaches but differs when the data
the termmetrid) is used to rank the statements or predicatedS aggregated. Section IV shows how predicate spectra can
according to how likely they are to be buggy (or associated®® cheaply approximated using statement spectra. Sections
with bugs). A programmer can then use this informationV and VI give performance figures for a theoretical model
to help find a bug. This paper primarily investigates theand commonly used benchmark sets. Sections VII and VIII
relationship between these statement-based and predicafliscuss results from the CBI and Holmes systems, including

based approaches to bug localization. We make the followin§’e use of branch and path spectra, and other related work.
contributions: Section IX discussed further work and Section X concludes.

« We show that although the raw data collected with 1. BACKGROUND

both approaches is the same, the way that it is aggre- All spectral methods use a set of tests, each classified

1A paper substantially similar to this will probably appean i as fa"e_d or passed_. FO!’ statement spectra [2], [3], [4],
APSEC2010. If so, the copyright will be owned by the IEEE. [5], which we describe first, we gather data on whether

Table | Lo .
STATEMENT SPECTRA WITH TESTSTY ... T example, whether the return value of a function is negative,

zero or positive is often important, and predicates can be
introduced to test this. Similarly, when a variable is assit)

T P 15 Ty T5 f p f7L Pn . . .
Statement; || £ | 0 | L | LT | 1 |1]3] 1 | O a value, predicates can be introduced to compare it to other
gtat@montz (1) i 8 i (17 i % (1) i related variables and constants of the same type. For each
tatements test it is determined if execution ever reaches that program

: point (the predicate is reached, or “observed”) and whether

[TestResult | 1 [1 [0[O0J O] F=2P=3 the predicate is ever true. As with the statement-based
approach, for each predicate we ultimately compute four
integers: the numbers of failed and passed tests in which

)) the predicate was observed (andp’) and the numbers of

each statement is executed or not for each test. This ca@ljieq and passed tests tests in which the predicate was true

be represented as a binary matrix with a row for each(f andp; we relate these to th¢ and p for statements in

statement and a column for each test; 1 means executed addtion 111). Predicate metrics are applied to these vailues

0 means not executed. For each statement, four numbefge same way as statement metrics in order to rank predicate

are ultimately produced. They are the numbers of failed,cq4ing to how closely they are associated with a bug.
and passed test cases in which the statement was executed

(f and p) and failed and passed test cases in which the

statement was not executefl, (and p,,). Table | gives an Table Il gives the definitions of the predicate metrics we
example with five tests, the first two of which fail. Statementuse. The first two rows are based on the CBI (Collaborative
metrics (numeric functions used to rank the statements) ar@ug Isolation) system [12]. The simplest metric used in CBI
a measure of how similar the rows of the matrix are to thdS Increase, defined in terms of Failure and Context. Context
result vector, or how similar the set of failed tests is togge is the proportion of tests which fail, of all the tests which
of tests which execute the statement. Measures of sinyilaritobserve the predicate. Failure is the proportion of testshwh
are important in classification and machine learning, nofail, of the tests where the predicate is true. The diffeeenc
just debugging, and scores of different metrics have beehetweeen these values (Increase) may ituitively indicate h
proposed (see [5]). Most commonly they are defined in term§losely the predicate being true is associated with a bug. CB
of these four values. However, due to our use of predicatéas also used two other metrics, Log and Sqrt, which are
spectra as well, it is simplest for us to define them usinghe harmonic mean of Increase and another value based on
p, f and the total number of failed and passed teBtgsnd the proportion of failed tests for which the predicate itru

P, respectively (this is possible becauge = F — f and (FP). One uses logarithms (Log) and the other square roots
pn = P —p). (Sqrt) to attempt to reduce the influence of FP. Failure is

Table Il gives definitions of the statement metrics usectduivalent to Tarantula and FP is equivalent to Russell for

here. Due to space limitations we focus on metrics whicHanking purposes [S].
have been previously used for software diagnosis and intro-
duce them very briefly ([5] provides more background). The The last row defines our three new metrics. The first,
Jaccard metric is the oldest and was originally used forclasFpC, adds Context to Failure rather than subtracting it. Our
sifying plants [6]; it has been used in the Pinpoint debuggeexperiments suggest this performs significantly betten tha
[7]. The Russell (and Rao) metric [8] is also quite old; we |ncrease, indicating the intuition behind Increase hasalisb
include it because it is related to some metrics for predicatmerit. The next two, OFPC and O8FPC, are variations of
spectra. The Tarantula system [2] was the first spectradbas@OPC based on the understanding of optimal metrics for
debugger. Ochiai, Jaccard, Ample and Tarantula metrios hawingle bug programs. The optimal metrics discussed in [5]
been evaluated for diagnosis using the Siemens test suitgnk primarily on f and secondarily on-p (or 1/p). If
[9]; the Ample metric was adapted from the AMPLE bug we ignore f/ and p’ (or they have the same values for
localization system [10]. The Zoltar metric [11] has beeng|| predicates, so Context is constant) OFPC and O8FPC
proposed for debugging as an enhancement to Jaccard, aRglve the same property, and are therefore optimal in the
Wong3 is the best of several metrics proposed for debuggingame sense a9”. However, they both give some weight
in [4]. O is one of a class of metrics which are proved toto Context: the same weight as Failure in OFPC and one
be theoretically optimal for some single-bug programs [S]eight the weight of Failure in O8FPC. We currently have
(we discuss this work further in Section V). little theoretical understanding of the multiple bug case,
For predicate spectra [12], [13] we collect data on predso we cannot say whether the predicate-based approach is
icates, such as the conditions of if-then-else statementsheoretically better than the statement-based approach fo
As well as collecting data related to control flow (branchmultiple bugs. Hence we make single bugs our intial focus
spectra), other predicates can also be instrumented. Far comparison and evaluation.

Table I
DEFINITIONS OF STATEMENT METRICS USED

Name Formula Name Formula Name Formula
T
Jaccard F%rp Tarantula ﬁ Ample % - %‘
FTP
iai f f f
Ochiai TR Zoltar Tip 000 T5p Russell o
P if p<2
Wong3 | f — h, whereh = 240.1(p—2) if 2<p<10 or f—PL+1
2.8+ 0.001(p —10) if p> 10
Table Il
DEFINITIONS OF PREDICATE METRICS USED
Name Formula Name Formula Name Formula
Failure ﬁ Context f,fip, Increase Failure — Context
f 2 2
FP N Log — T T=F Sqrt —Y 7
Trncrease T Tog F Tnorease V7
FPC Failure + Context OFPC 3f+ FPC O8FPC | 10f + 8Failure 4+ Context
I1l. RAW DATA AND AGGREGATED DATA are the same as th¢ and p for the corresponding “if”

There is no essential difference in the raw data (the bina
matrix) collected from predicates and statements. Consid
the following three lines of code:

rgtatement. Thus information from twaifferent statements

js combined in predicate spectra. For a given set of tests,
F and P are fixed — they don't vary between statements.
Thus, for a statement metric the only difference between
different statements is théandp values. There can bE+1

1 if (O distinct f values (sinceé) < f < F) and P + 1 distinct P

2: T; values (sincé) < p < P) so the number of distinct possible
3: el se E; argument values for a statement metric is

Instrumenting the three statements gathers identical-info r r
mation to instrumenting predicate C and its negation: both Y3 1=(P+1)(F+1)
C and its negation are observed if and only if line 1 is p=0f=0

executed, C is true if and only if line 2 is executed and thepgr predicates) < p’ < P and0 < f’ < F but, in addition,

negation of C is true if and only if line 3 is executed. Note ¢ and can vary between statements:< p < p’ and
that in general it is possible that T and E are both executel < r < /. The number of distinct values is

(C and its negation are both true at some times) because the o
statement may be executed more than once in a test. LI S
Given a predicate which is deemed worth instrument- Z Z Zzl
ing but not used in control flow, it is possible to add a
dummy if-then-else which tests the predicate and has nofhus, compared to statement metrics, there are strictly
ops in the “then” and “else” branches. If for each predicatemore possible distinct values for the arguments to preelicat
instrumented we have an if-then-else, the raw statemenhetrics. For example, wittF' = 5 and P = 15 there are
information contains all the predicate information (asswgn 96 possibilities for statement metrics and 2856 for predica
we also know the structure of the program — which rows ofmetrics.
the matrix correspond to which “then” and “else” branches The predicate approach to aggregation thus maintains
etg. Similarly, if all conditions in a program which deter- more information, by combining information from different
mine control flow are instrumented, then the raw predicatéthough not completely independent) statements in appli-
information contains all the statement information. cations of the metric. The statement approach allows us
However, although the raw data is the same in bothto know F' and P, which cannot generally be determined
cases, the way it is aggregated to get four integers fowith the predicate approach, so the aggregated predicate
each statement is different with the two approaches. Fodata does not contain all the information of the aggregated
predicates,f and p are the same as thg and p for the statement data. However, our results indicate #atnd P
corresponding “then” or “else” statement, byit and p’ are less important than the information obtained from pairs

p'=0 f'=0p=0 f=0

of statements. Also, it is trivial to compute and P in 6: S6;
a predicate-based system and allow the metrics to use this
information (in fact, Log and Sqrt in CBI usE).

It is possible to have a unified view of statement and) ;
predicate spectra by having the two “global” variabléand assuming stgte_menSZ—Sg) do r_10t make the control jump
P (which are the same for all program points) as well as'© outside this if statement _(usug;pt o, break, ret_ur n,
the four predicate spectra variablgsp, f' andp’. Whether etc) the spectra fosg will be |dent|_cal t0S;. Comparlng the
the latter are associated with predicates or statements %atemerjt spgctra fCﬁ“’ﬁ andSs wil thus_ (usually) give us
immaterial to the inner workings of a bug localization tool. the predicate information for the negation@j. In general,

Giving a certain rank to a predicate which is the condition!l W€ can recognise the .ﬁrSt statement in a then b‘fancrg
of an if statement is equivalent to giving that rank to theand the statement immediately following the end of an “else

statements in the “then” branch. Partly due to infrastrectu branch we can reconstruct predicate spectra. We know that

we have previously developed, we associate the spectra wi{ﬁOth the “then .and else branche_s wil pe executed no
statements. Thug’ andp’ for a statement in a “then” or more than the if statement. The interesting case (where

“else” branch are th¢ andp, respectively, for the associated Ehﬁ p:ed|(ia|te Lm;orma:]lon IS pOtem'a"ﬁ us?flfl) lls Whr? g thh
“if”. For statements at the top level of a function, whererthe then™ or “else” branches are executed strictly less than t

is no enclosing conditional, we saff = f andp’ = p. If statement.) o o
This is equivalent to there being an enclosing conditional e use the following heuristic for recognising “then” and
which always chooses this branch, and leads to reasonabig!Se” branches and computinfj andp; (we use subscripts
default behavior. In the experiments we report on later we" the spectra variables here_ to denote statement numbers).
give performance for both statement and predicate metricd! fi < fi—1, pi <pi—1 and eitherf; < fi_y or p; < pi
the only difference is that the statement metrics do not us&€n we assume statemens the start of a then block; we set
f" andp’ in their definitions. fi 1o fi_1 andpj to p;_,. Otherwise, iff; < fi11,pi < piy1
and eitherf; < f; 11 orp; < p;+1 then we assume statement
IV. PREDICATE SPECTRA FROM STATEMENT SPECTRA ¢ is the end of an else block; we sgftto f;1.1 andp] to ;1.
. Otherwise, we sef/ to f; andp, to p;,. Recognising “then”
Many profiling tools can be used to extract statementy,q «g|se” pranches can be done more accurately if we have
spectra easily (for example, we have usgtbv, part of ,0ceqs to the whole matrix of raw data: we accurately check
the_gcc compiler su!te). It is somewhat harder to f_md too_ls_ if the tests which executed one statement are a subset of the
which produce p_redlcgte spectra. Even when available, it igygts \yhich execute the previous/next statement (the logic
often harder to link this data to source code, partly becausgy o approximates this). This has worse space complexity,
we often put more than one predicate on a single line (Whe;; compromises are possible, where we store some extra

there is a condition which involves conjunction or disjunc'information about each row of the matrix rather than the
tion), whereas we rarely put more than one statement on @ Jia row.

single line. It can therefore be useful to combine statement : : .
. . Having determined which statements are at the start of
spectra from different statements in order to reconstruct

redicate spectra. To do this accurately requires knoveledg™ ‘then” block and the end of an "else” block, the spectra
b b ' y req “Yalues for these statements should be propagated forwards

of the program structure, otherwise it is not clear whichrpai {for “then”) or backwards (for “else”) to all statements in
i

Comparing the statement spectra for statem@n{line
1) and S, gives us the predicate information fét,. Also,

of statements should be combined. Writing and malntalmn_hat block. Again, we use a heuristic to determine such

a_tool which analyses program _s_tructure and con_wb_lnes Statements. We assume any statement with the gaamed
with statement spectra is a significant task. Combirafig o o
. A ..p value is in the block, but stop scanning if we encounter a
pairs of statements is simple but does not scale well (wit . :
b : .~ statement with strictly greatef or p value. If we encounter
N statements there ar@(N*) pairs) and most of the pairs : R
. smaller f or p values we just keep scanning; this is so
will be unrelated statements and of doubtful use. .
gg/e can handle nested if-then-else statements betvfgen

The approach we Squ.eSt here is to just use pairs ol q Ss or betweenS; and.Ss, for example. Again, having
consecutivestatements, which can be done very easily, an

heuristics to infer th iruct dh ccess to the matrix of raw data (or a summary) can lead
use heuristics to inier the program structure an enc:te? greater precision. For example, if we have a hash of

compute predicate information. Consider the code SEIMERLach row stored, we can scan for equal hash values rather

below.: equalf andp values, increasing precision considerably. The
1. if (Cl) { time complexity could also be improved by creating doubly
2: S2; linked lists of statements with the same hash foand

3: S3; p) values. The figures we provide here are for the simple
4: } else { $4; algorithm without these improvements.

5: S5; } Algorithm 1 sketches the overall process. We apply this

algorithm for each statement, in order. If the statement haand for loops are indistinguishable from if statementsesinc

already had itsf’ (and p’) computed we do nothing, to we only collect binary data, not execution counts. The main
prevent values which are computed when scanning forwardgaccuracy of Algorithm 1 is in the scanning process, where
from being overwritten. sometimes scanning proceeds to far and assjgrend p’

values it should not.

/I Computef’ andp’ for Fhe it" statementg;, V. THEORETICAL PERFORMANCE
/I (and maybe others) givefi andp values
PredSpectra(i): To assess performance in idealised conditions we adopt
begin the model-based approach of [5]. We briefly review it here.
if f[i] not yet assignedthen The following very simple program (named ITE2) was used
if S; used in less tests thaf_; then to model the debugging problenStatementS, is buggy;

/I Start of then block (probably) the others are correct (the choice $f is arbitrary due to

f//[[.']] = f[['l-ll]]; symmetry but the fact there is a single bug is important).

pll = pli-1f;

Scan(i, 1); // scan forwards if (Cl) S1; else S2;
end if (C2) S3; else $4;
else// ";E%dugfe gég Igliscie(sptrsoghsg}ﬁl then Sy i; executed in half the tests on average and, of those,

£l = fli+1]; half fail on average (buggy code can behave correctly)._ The

I = ofia1] second if-then-else can be seen as the source of a “signal”

p'[i] = pli+1];) T :

Scan(i, -1); // scan backwards in the_data, indicating where the bug is. The_fact that _
end sometimes behaves correctly attenuates the signal. The firs
else if-then-else is a source of “noise”. Depending on the set of

il = £l tests, executions of; or S, may be correlated with the

p'[i] = plil; tests failing and thus be ranked equal or higher tisan
end A set of tests corresponds to a multiset of execution paths

end through the program, where faulty and correct executions
end of S, are considered distinct paths. Given a multiset of
Scan(i, inc): execution paths, program spectra for the statem8nts$,
begin can be generated, the statements ranked according to sariou

J=1+1nc; metrics and the performance of the metrics evaluated for tha

while S; exists and is not used in more tests than particular set of tests (the best case is whemanked strictly

Si do _ above the other statements).

if Sj/ used in same tests &4 then Given a number of testsy, all possible multisets ofV

f/ [_1] = f[_']; execution paths can be considered in order to evaluate the

P'lil = pliI; overall performance of each metric. For largé (or large
eﬂd . numbers of paths if we use a program more complicated than

endJ =)+ inc ITE2) there are too many multisets to practically enumerate
end but random sampling from a uniform distribution can be
used to find approximate overall performance. We can also

H . H l 7
Algorithm 1: Computingf” andp’ from f andp values determine how overall performance is affected by various

factors such as what proportion of tests fail, what proparti

There are several ways in which Algorithm 1 can infer theof tests execute the bug and how “consistent” the bug is
program structure incorrectly, but in most cases the spectr(what proportion of the tests which execute the bug fail).
produced are still correct. For example, consider the case Although the ITE2 model program is very simple, it
where the “then” branch is used in all tests in which the ifaccurately predicts relative performance of metrics oal"re
statement is executed but teé&sebranch is not. Statements C programs seeded with single bugs. Th2 metric was
S, andS, are not recognised as a then branch but the defauftroven to be in a class of metrics which asptimal for
/' andp’ values are what would be computed anyw8y. this model, with respect to a simple evaluation measure, for
andSs are inferred to be a “then” branch and hence théir all numbers of tests (no metric can perform better overall).
andp’ are thef andp values ofSs, respectively (which are OP also performed best on real benchmarks. Although other
the samef andp values asSy, the if statement, as desired). enhancements to statement-based spectral debugging have
We get a similarly correct result in cases where the “else’been made [14], a method which out-perform® in the
branch is always executed, or there is no else branch. Whilgingle bug case has been elusive.

. Number oftests] 5 [20 | 50 [200
In the ITE2 model program, both if statgments are always Predicaic meircs
executed, scContext is constant for a given set of tests. O8FPC T121| 8.14] 7.74] 7.69
In such a case it can be shown that the Increase metric (F)F'):CPC ﬁgé g-;—j ;-;g ;-3519
is equivalent to the Tarantula metric for ranking purposes Tog STe6d 1078 T 9.0 822
(in general, Tarantula is equivalent to Failure) [5]: using Increase 2216 | 11.29| 9.16| 822
the Tarantula metric with statement spectra fr — Sy Sqrt 29.95] 11.34| 910 8.24
d identical rankings to using Increase (or Failure) Context c.82] 18031 1651] 1564
pl‘.O ucesll 9 9 i X Statement metrics
with predicate spectra fo€;, Cy and their negations. In o? 1271 818 7.75] 7.69
order to compare the use of predicates and statements for éo';af g;i Ség ;;2 ;-gg
. . : chial
spectral debugglng_m a more general settmg_(where Context Jaccard 3741827 778 770
can vary between different statements for a given set cf)test SLog 1278 831| 783]| 7.72
we used a model with two (symmetriaestedif-then-else Cvmples ig%i g-ii ;;g ;-gg
. ong
statements, as follows: SSqit 319 847 7851 776
i f c1 Tarantula 1319 857 788] 7.71
! (_) { Russell 33.52 | 30.51 | 28.06 | 26.96
if (C2) S3; else $4;
S5; Table IV
} el se IDEAL RANK PERCENTAGES FOR METRICS WITH MODEL
S6;
it (C7) | Num. tests 5 20 50
if (C8) S9; else S10; Heuristic | Then | Scan| Then | Scan| Then | Scan
SIE O8FPC 1121 | 1221 | 8.14| 8.14| 7.74| 7.74
| OFPC 1121 | 1221 818| 811| 7.75| 7.74
} else FPC 11.84 | 13.00 | 853 | 845] 7.87] 7.86
S12; Log 2137 | 1332 | 10.82 | 12.43| 9.06 | 10.03
S13; Increase | 22.06 | 14.22 | 11.38 | 13.00| 9.18 | 10.16
Sqrt 30.47 | 14.02 | 11.42| 12.86 | 9.13 | 10.10
Note that statementSs, S11, Si3 and the if statement Context 25.39] 3310 20.76 | 16.26 | 18.33 | 14.09
with condition C7 will have the same statement spectra as Table V

a previous if statement; they enable us to compute predi-
cate information from statement information of conseautiv
statements. In our experiments we picked one of the inner
statements,S3, to be buggy (note that it may not have
the same Context value aS;). We ranked all thirteen Table V gives results for the predicate metrics using
statements, including the if statements. Althodghhas not heuristics to determine the program structure: “Then” nsean
been proven to be optimal for such a model, it is reasonablgist the heuristic for detecting “then” and “else” statertsen
to expect it is optimal and in our experiments no statementand “Scan” means the additional scanning to determine the
based metric has performed better for this model. whole “then” or “else” block. Neither heuristic affects the
The performance measure we userask percentages statement metrics because they don't fiser p’. Since there
used by various researchers [3], [4], [5]. This is the rankare only single statements in “then” and “else” the scanning
of the highest ranked buggy statement, expressed as ia hot necessary for this model, it just makes inference of
percentage of the program size. For example, if the prograrthe program structure less accurate, if anything.
has 100 lines of code and the highest ranked bug is the We have done some experimentation with similar models
tenth in the ranking, the rank percentage is 10% and th&o help validate these results and gain a deeper understand-
programmer needs to examine 10% of the program code iing, but more is desirable. As expected, the best of the-state
order to locate the bug (assuming they follow the ranking) ment metrics iS)”. However, the best of these metrics over-
Lower rank percentages thus mean better performance. Hll is the predicate metric O8FPC, followed by OFPC. This
there are ties in the ranking (several statements, inajudinis the first time a spectral debugging method has been shown
the bug, have the same metric value) we take the mid-pointo be superior toO? for single bug programs. Thus the
We use the average over all sets of tests. Table IV giveadditional information retained can increase performalice
“ideal” results (where the structure of the code is knownis not yet known how much performance gain is possible,
precisely) in average rank percentages for five, twenty, fift since we don’t know what the optimal predicate metric is.
and two hundred tests. We included “SLog” and “SSqrt” The previously proposed predicate metrics (essentiabbgda
which are the same as SLog and SSqrt, respectively, exceph Context, Tarantula and Russell) do not perform well and
they use a constant value f@ontext Recall that Tarantula FPC is significantly better than Increase (it even bé&its
is equivalent to Failure. for small numbers of tests).

RANK PERCENTAGES USING HEURISTICS WITH MODEL

Metric | STS+Unix | Concordance
Predicate metrics

All the best metrics rank statement primarily ghand

give a small negative weight tp (the condition for op- OFPC 17.94 9.95
timality given in [5]). Without thep component we have O8FPC 17.94 10.08
(the equivalent of) the Russel metric, which perf h rbe 28.24 19.90
quivalen _o) e Russel metric, which performs muc Context 2018 5000
worse. The weight given t¢g’ andp’ is comparable to that Log 44.93 49.05
of p or (in the case of O8FPC) significantly smaller. Thus Increase 45.41 50.04
it seems that the most important information is captured b Sart 4702 2118
! Imp . ! onti ptu . y Statement metrics
the statement spectra (or, equivalently, whether preekcat or 17.86 10.11
are true). The information retained exclusively by pretica Wong3 18.19 10.15
tra (whether the predicate has been observed) is-signif Zoltar 18.23 1011
spec _ p _ _ 9 Ochiai 21.63 11.19
icantly less important but still a useful refinement. Jaccard 23.64 17.68
For large numbers of tests the performance of the better ggogt 5233 %g-ig
metrics_converges to 7.§9 (1/13, which is the best possible Targntula 5709 50.03
value since there are thirteen statements). For Con&xt, Ample 30.16 2753
and$, are always equally ranked and the performance seems Russell 30.02 21.03

to converge (slowly) to 2/13. As the number of tests grow Table Vi

in our model, the results are more dominated by sets of RANK PERCENTAGES WITHSTS+UNIX AND CONCORDANCE
tests which have a reasonably uniform coverage of different

paths. Real tests suites have much less uniform coverage

and the convergence is slow at best. The performance of

Wong3 is also significantly affected by the number of tests.

Of the three different cases in the definition of the metric

(see Table) the last gives best performance (it is verymultiple bugs. We usegjcc version 4.2.1 andjcov to
similar to OF). With smaller numbers of tests the first two extract program spectra. This gives spectra for all lines of
cases are used more, particularly with this model, in whicheach program (including blank linest ceterd; we ignored
the buggy statement is only executed in a quarter of the testfines that were never executed when calculating average
on average. rank percentages. Table VI gives performance figures for

The heuristic for determining “then” and “else” blocks the various metrics with both sets of benchmarks.
works well for reasonable numbers of tests (the model

includes extra statements to help the accuracy of this ieuri Unfortunately, the new predicate metrics were not able to
tic). Even for very small numbers of tests, the inaccuracyut-performO? for STS and Unix. However, they perfomed
ends up not affecting overall performance at all for thedsett best for Concordance, and for STS and Unix they performed
metrics and the poorer metrics are only affected a littlee Th better than all metrics other than?. With more accurate
heuristic for scanning blocks results in more performanceéheuristics and possibly better predicate metrics there are
variation, particularly for poorer metrics. As we mentidne good prospects of predicate metrics performing better than
both heuristics can be made more accurate reasonably;easity” overall for single-bug programs. As with the model,
we have implemented a version of scanning which useshe previously proposed predicate metrics performed goorl
the whole binary matrix and this results in a performanceg-or Concordance their performance was indistinguishable
variation of less than 0.06 for all cases in Table V. Forfrom random ranking and for the other benchmark set they
the better metrics, even when the simplest version of botlbarely performed better. This confirms the suspicions daise
heuristics are used, the performance is better than in [5] that these metrics are poorly designed. In [5] the
performance of CBI and various statement metrics was
compared but it was unclear if the comparison was fair due
We now discuss performance on actual buggy programgo significantly different ways of measuring performance.
The main benchmark we use is a combination of the Siemen®@ur experiments here only use predicates related to branche
Test Suite (STS) and Unix (a collection of Unix utilities) but it seems unlikely that relative performance of metrics
[15], widely used benchmarks [5], [3], [2], [16]. They cosisi varies greatly with the kinds of predicates chosen. Althoug
of multiple versions of several small C programs seededhe heuristics may affect performance of the predicate
with bugs, along with numerous test cases (1000-6000 fometrics to some degree, it seems clear that the previously
STS and 150-900 for Unix). We used the same “single bugproposed metrics perform more poorly than the comparable
subset of this test suite as in [5]; there are 224 programstatement metrics with consta@bntext(SLog, SSqrt and
in total. In addition, we used the Concordance benchmarRarantula). FPC performs better than Increase and our two
[17] consisting of 13 programs with “real” bugs (as opposednew predicates influenced Iy perform significantly better
to deliberately seeded bugs); we excluded two which havstill.

VI. PRACTICAL PERFORMANCE

VII. RELATED WORK — CBI AND HOLMES the same figure and using Log gives 54%)). In [18] it is
suggested that the very poor performance for branch spectra
The main author of the CBI system has subsequentlynay be due to the fact that some of the programs in the test
contributed to the Holmes system [18]. Holmes upash syite has previously undergone extensive testing. This may
profiles (or spectra): sets of statements which form (parbe true, but here we propose some other possible reasons
of) an execution path. Only acyclic paths through singlefor the worse than expected performance.
functions are considered, since such information can be | [18] there is no statement about how performance is
gathered relatively efficiently [19], but this still prowd measured in the case of ties. If ties are reported using the
a significantly richer source of information than single_ worst case scenario (where the bug is assumed to be the
statements or branches. The raw data for paths containgst node examined at that level of the BFS) then this will
strictly more information than the raw data for statements;nder-estimate the expected performance. Furthermore, as
(Table 1). A variant of the predicate spectra methodologynerformance drops, the under-estimation will tend to worse
is used to compute four integers for each path, to be usefinen performance is very good, the bug will be close to the
for ranking. For each passed and failed test, a path can g, indicators in the graph, there will be few such nodes and
executed (like a predicate being true, givipgand f) or therefore few nodes in the tie. When performance is worse,
observed/reached (meaning the fir.st. statement in the path j§e distance will be greater and (generally) there will e fa
executed but not the whole path, givipgand f’). The Log more nodes in the tie so gap between the average case and
metric from CBI is used for ranking. Instead of producing yworst case will be larger. Thus the reported performance may
the entire ranking, a smaller set of paths is output to irtdica pe significantly worse than the actual average performance.
the most likely causes of bugs. The top-ranked path is always There is another reason related to the breadth-first search
included. If it cannot explain all failed tests (becauseyonl \ynich may affect actual performance. The reason for using
some failed tests executed this path)_ the remaining failegrg (o evaluate performance is because only a few of the
tests are used to recompute the ranking of other paths ang,q ingicators are reported, rather the ranked list cointgin
the top-most one is added to the set of likely bug indicatorsy) of them. This effectively discards much of the informa-
This is repeated until all failures are explained. tion collected dynamically. For example, it may be that ¢her
In [18], there is an evaluation of the relative performancegre several bug indicators with high metric values which
of path spectra, predicate spectra (in the style of CBI) angxpain all failed tests. The Holmes system would returt jus
branch spectra (the subset of predicates used in contrghe of them to the user. If it does not indicate the actual
flow). Because the whole ranking is not produced, a differenpg |ocation, the user has only static information to fall
way of measuring performance is given. Starting with thepack on — the program dependence graph. The performance
bug indicators, a breadth-first search (BFS) of the programheasure assumes the user will perform a BFS using this
dependence graph is performed until the actual bug is foungnformation. Thisimplicitly gives a ranking to all nodes
The number of nodes in the graph examined, expressed e performance measure gives the rank percentage for
a percentage of the whole graph, is used as the perfogns implicit ranking). Given that the second and subsetjuen
mance indicator (each node corresponds to a basic bloginked bug indicators have high metric values, one would
in the code). A graph of the number of bugs found in thepresume this information is more valuable than the static
benchmark set versus the percentage of the code examinggformation, yet Holmes discards it. Returning the whole
is given. As may be expected, path spectra performed bestanking, or at least the ranking from bug indicators with

followed by predicates then branches. However, the absolutyigh metrics values, may well lead to better performance.
performance, particularly for branch spectra, is signifita

lower than what we would expect.

When examining 50% of the code, around 9% of bugs
were found using branch spectra, compared with 51% for We now briefly review other related spectral debug-
predicates and 78% for paths [18]. The benchmark set waging work. The SOBER system [13] is another important
a combination of part of the Siemens test suite plus someredicate-based spectral debugging system. It uses a non-
larger programs. Even by randomly guessing bug locationbinary matrix containing frequency counts (for example,
we should be able to achieve 50% on average. In [20] it wakiow often a predicate evaluated to true in a test) rather
reported that CBI found 75% of bugs in the Siemens testhan the “binarised” data we use here. The number of times
suite by examining 50% of the basic blocks in the code. Ina predicate is true in each passed test forms a weighting;
[5], by examining 50% of the executed lines of code usingsimilarly for each failed test. Ranking is based on the
statement spectra (which should be very similar to branckvaluation biasvhich is an established statistical measure of
spectra, as discussed here) 83% of bugs were found using tddference between the two weightings for each predicate. |
SLog metric and 90% were found usify (usingO8F PC is difficult to do a direct comparison with approaches which
andOF PC and the heuristics described in this paper givesuses metrics over the (aggregated) binarised data.

VIIl. OTHER RELATED WORK

The work which resulted in the Wong3 metric has beenmodified to make use of predicate information. We have per-
extended, and a considerably more elaborate metric has bet@armed some initial experiments on multiple-bug programs.
proposed [21]. We have not evaluated it here, partly becausé&/e obtained similar poor performance for the previously
it is so complicated and partly because some of our otheproposed predicate metrics but improved the performance
experiments suggest it does not perform significantly betteof some excellent statement metrics by adding a multiple
than Wonga3 for single-bug programs [22]. In [14] a variationof Context. Experiments on larger benchmarks are also
of the normal ranking method is proposed, for statementlesirable to see how the approach scales.
spectra. Each failed test is given a weight, dependent on the
number of statements executed in the test, with smaller num-)
bers of statements executed leading to higher weightss Test The predicate-based and statement-based approaches to
with higher weights have more influence grandp, which spectral bug quallzatlon collect equivalent raw dgta from
are real numbers rather than integers. The overall rankin§ogram executions. However, the way the data is aggre-
is computed incrementally, with weights being adjusted agated differs. More information is retained by the predicat
each stage. For single-bug programs, performance of optim@ethOd .than the stz.:\tement method as it combines spectral
metrics is not affected. However, performance is improvednformation from pairs of program points. We have shown
for multiple-bug programs using the best known metrics that this additional information can improve performance

This weighted incremental approach could be adapted t§f bug localization. Collecting statement spectra is easie
predicate or path spectra. from a practical perspective due to the availability of vas

profiling tools. We have proposed a simple heuristic method
which combines spectra from consecutive statements in
order to reconstruct predicate information.

For systems which collect statement spectra, our study Experiments using a model-based approach indicate the
indicates potential for improving performance by imple- heuristics are reasonably accurate and we have indicated
menting more accurate heuristics for determining prograniow they can be improved further. We have evaluated several
structure. Even if accuracy of heuristics remains a stumgbli Statement metrics and predicate metrics (which are alsth use
block, new predicate metrics such as those proposed here df path spectra) using this these heuristics. This pravale
worth incorporating into systems such as CBI and Holmegeasonably fair comparison between these metrics. Althoug
(which always determine the program structure accurately)oreviously proposed predicate metrics perform poorly, we
since it seems performance can be significantly improvediave proposed two new predicate metrics which perform
in this way. Gaining a better understanding of the relativevery well. For a model single-bug program, they achieve
performance of different systems and methods is also &etter performance than the best known statement metric,
priority — currently the literature contains unresolved in OP. This is theoretically significant becaué¥ is known to
consistencies. be the best possible statement metric for some models and

It is also worth investigating other new predicate metrics.iS suspected to be the best for the model we chose to use
Previously proposed predicate metrics do not perform parbere. The practical results with single-bug programs ate no
ticularly well and we have only briefly experimented with as positive, with performance of the best predicate metrics
a few new metrics. Statement metrics attempt to solve thélightly worse thanO” for the largest benchmark set and
same problem as as similarity metrics in many other areaslightly better thanO” for the smaller set. However, with
(measuring similarity or distance between two sets or N-better heuristics (or analysing program structure prégise
dimensional vectors) hence there is a huge body of relevarifere is a good prospect of increasing performance. Further
work on such metrics. Predicate metrics are different beeau more, performance of existing systems which use predicate
they measure “similarity” between a pair of sets and a singl®’ path spectra is likely to be significantly improved by
set. It is harder to get a good intuition for constructing@dopting metrics such as those proposed here. Finallyg ther
such metrics. The intuition behind Increase seems flaweds still room to develop even better predicate metrics.
for example. Finding an optimal class of metrics, even in
the single bug case, may be significantly harder than for
statement metrics because we have more information and!! T- Reps, T. Ball, M. Das, and J. Larus, “The use of program

h d f freed hen desiani . profiling for software maintenance with applications to the
ence more degrees of freedom when designing metrics. year 2000 problem,” inProceedings of the 6th European

Multiple-bug performance should also be investigated. Conference held jointly with the 5th ACM SIGSOFTNew
Optimal single-bug metrics are rather specialised andtdon’ York, USA: Springer-Verlag New York, Inc. New York, 1997,
perform particularly well for programs seeded with two pp. 432-449.
or more bugs [14]. We know of statement metrics which [2] J. Jones and M. Harrold, “Empirical evaluation of theatar

consistently perform well for multiple bugs (and reasogabl tula automatic fault-localization techniqueProceedings of
well for single bugs), but it is unclear how they are best the 20th ASEpp. 273-282, 2005.

X. CONCLUSION

IX. FURTHER WORK

REFERENCES

[3] R. Abreu, P. Zoeteweij, and A. van Gemund, “An evalua- [14] L. Naish, H. J. Lee, and K. Ramamohanarao, “Spectral

tion of similarity coefficients for software fault localizan,”
PRDC’'06 pp. 39-46, 2006.

[4] W. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective Fault

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Localization using Code Coveragd?toceedings of the 31st
COMPSAG pp. 449-456, 2007.

L. Naish, H. Lee, and K. Ramamohanarao, “A Model for
Spectra-based Software Diagnosi&¢cepted for publication
in TOSEM 2009.

P. Jaccard, Etude comparative de la distribution florale dans
une portion des Alpes et des Jur8Ull. Soc. Vaudoise Sci.
Nat, vol. 37, pp. 547-579, 1901.

M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem determination in large, dynamic intsrn
services,”Proceedings of the DSNp. 595-604, 2002.

P. Russel and T. Rao, “On habitat and association of speci
of anopheline larvae in south-eastern MadrdsMalar. Inst.
India, vol. 3, pp. 153-178, 1940.

R. Abreu, P. Zoeteweij, and A. van Gemund, “On the Ac-
curacy of Spectrum-based Fault Localization, TIAICPART-
Mutation 2007 Windsor,UK: IEEE Computer Society, 2007,
pp. 89-98.

V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight kg
localization with AMPLE,” Proceedings of the Sixth sixth
international symposium on Automated analysis-driven de-

(15]

(16]

(17]

(18]

(19]

(20]

bugging pp. 99-104, 2005. [21]
A. Gonzalez, “Automatic Error Detection Techniquesda
on Dynamic Invariants,” Master’s thesis, Delft Universit§
Technology, The Netherlands, 2007. [22]

B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan,
“Scalable statistical bug isolationProceedings of the 2005
ACM SIGPLANVvol. 40, no. 6, pp. 15-26, 2005.

C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober:
statistical model-based bug localizatiorSBIGSOFT Softw.
Eng. Notesvol. 30, no. 5, pp. 286-295, 2005.

debugging with weights and incremental ranking,” i6th
Asia-Pacific Software Engineering Conference, APSEC 2009
IEEE, December 2009, pp. 168-175.

H. Do, S. Elbaum, and G. Rothermel, “Supporting Cori¢abl
Experimentation with Testing Techniques: An Infrastruetu
and its Potential Impact,Empirical Software Engineering
vol. 10, no. 4, pp. 405-435, 2005.

W. Wong, J. Horgan, S. London, and A. Mathur, “Effect
of test set minimization on fault detection effectiveness,
Proceedings of the 17th ICSBp. 41-50, 1995.

S. Ali, J. Andrews, T. Dhandapani, and W. Wang, “Eval-
uating the Accuracy of Fault Localization Techniques,” in
Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software EngineeringEEE, 2009, pp. 76-87.

T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani
“HOLMES: Effective statistical debugging via efficient pat
profiling,” in Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering IEEE Computer
Society, 2009, pp. 34-44.

T. Ball and J. Larus, “Efficient path profiling,” immicro.
Published by the IEEE Computer Society, 1996, p. 46.

L. Jiang and Z. Su, “Automatic isolation of cause-effec
chains with machine learning,” Technical Report CSE-2005-
32, University of California, Davis, Tech. Rep., 2005.

W. Eric Wong, V. Debroy, and B. Choi, “A family of code
coverage-based heuristics for effective fault localaati
Journal of Systems and Softwa2009.

H. J. Lee, L. Naish, and K. Ramamohanarao, “Effectivé&-So
ware Bug Localization Using Spectral Frequency Weighting
Function,” in Proceedings of the 2010 34th Annual IEEE
Computer Software and Applications Conference |l EEE
Computer Society, 2010, pp. 218-227.

