
Statements versus predicates in spectral bug localization

Lee Naish

Hua Jie (Jason) Lee

Kotagiri Ramamohanarao

Computer Science and Software Engineering

University of Melbourne

1



Outline

Statement spectra

Predicate spectra

Raw data versus aggregated data

Predicate spectra from statement spectra

Theoretical performance

Practical performance

Related work

Conclusion

2



Statement spectra for bug localization

Basic idea:

Execute the program multiple times using a test suite where we can

tell if each result is correct or not, gathering data about each

execution

For each statement/. . . , estimate how likely it is to be buggy based

on the data gathered

Rank the statements/. . . accordingly, then check the code

manually, starting with the highest ranked statement until the bug

is found (or we give up)

3



Statement spectra

Collect data on which statements are executed for each test

We count

• The total number of failed tests, F ,

• The total number of passed tests, P ,

and for each statement Si, the number of

• failed tests in which it was executed, fi, and

• passed tests in which it was executed, pi.

(the number of failed/passed tests not executing Si is implicit in

our presentation)

4



Statement spectra example

The raw data is a binary matrix and a binary vector

We compute F , P and the fi and pi for each statement

T1 T2 T3 T4 T5 f p

Statement1 1 0 1 1 1 1 3

Statement2 1 1 0 1 0 2 1

Statement3 0 1 0 1 1 1 2
...

Test Result 1 1 0 0 0

F = 2, P = 3

Measure “similarity” of matrix rows and result vector

5



Statement metrics used for ranking

Name Formula Name Formula

Jaccard f
F+p

Tarantula
f

F
f

F
+ p

P

Russell f
F+P

Op f − p
P+1

Ample
∣

∣

∣

f

F
− p

P

∣

∣

∣
Ochiai f√

F∗(f+p)

Zoltar f

F+p+ 10000F−f∗p

f

Wong3 f − h, where h =











p if p ≤ 2

2 + 0.1(p − 2) if 2 < p ≤ 10

2.8 + 0.001(p − 10) if p > 10

Op has been proven optimal for a class of single-bug programs

6



Predicate spectra

Instrument predicates, eg conditions of if-then-else

Also can compare values returned from functions with zero, etc

Count the number of failed/passed tests where the predicate is true

(f and p)

Also count the number of failed/passed tests where the predicate is

reached/observed (f ′ and p′)

This gives four integers, just like for statement spectra

7



Predicate metrics

Name Formula Name Formula

Failure f

f+p
Context f ′

f ′+p′

Increase Failure − Context FP f
F

Log 2
1

Increase
+ log F

log f

Sqrt 2
1

Increase
+

√
F√
f

FPC Failure + Context OFPC 3f + FPC

O8FPC 10f + 8Failure + Context

Increase, Log and Sqrt have been used in the CBI system

FPC, OFPC and O8FPC are new; the latter two are based on Op

FP is equivalent to Russell for ranking

Failure is equivalent to Tarantula (as is Increase if Context is

constant)

8



Raw data and aggregated data

There is no essential difference in the raw data (the binary matrix)

collected from predicates and statements

1: if (C)

2: T;

3: else E;

Instrumenting the three statements gathers identical information to

instrumenting predicate C and ¬C

C and ¬C are observed if and only if line 1 is executed

C is true if and only if line 2 is executed

¬C is true if and only if line 3 is executed

Any instrumented predicate can be turned into an if-then-else with

no-ops for T and E

9



Raw data and aggregated data

Statement metrics have just two degrees of freedom:

P
∑

p=0

F
∑

f=0

1 = (P + 1)(F + 1)

Predicate metrics use counts from two different statements:

P
∑

p′=0

F
∑

f ′=0

p′
∑

p=0

f ′
∑

f=0

1

Thus predicate spectra retain more information

In our unified framework we have F and P (“global” variables),

and f , p, f ′ and p′ (for each statement/predicate)

Statement metrics just don’t use f ′ or p′

10



Predicate spectra from statement spectra

We use spectra from consecutive statements to guess the program

structure and extract predicate/branch spectra (f ′ and p′)

1: if (C1) {

2: S2;

3: S3;

4: } else { S4;

5: S5; }

6: S6;

If S2 is executed less than S1 we guess its the start of a “then”

(f ′
2 = f1 and p′2 = p1)

If S5 is executed less than S6 we guess its the end of an “else”

We scan forwards/backwards to identify other statements with

identical spectra to find the rest of the then/else

11



Model buggy program ITE2

if (C1) S1; else S2;

if (C2) S3; else S4 /* BUG */;

Executing S4 leads to failure 1/2 the time on average

Given number of tests N , generate multisets of N execution paths

For each multiset, compute spectra, ranking and performance

Compute overall performance of each metric

Op is optimal

Too simple for evaluating predicate metrics — Context (f ′ and p′)

the same for S1–S4

12



Model buggy program

if (C1) {

if (C2) S3; else S4;

S5;

} else

S6;

if (C7) {

if (C8) S9; else S10;

S11;

} else

S12;

S13;

S3 is buggy; We rank all 13 statements

Context varies between statements

13



Ideal performance (rank %) with model

Number of tests 5 20 50 200

Statement metrics

Op 12.71 8.18 7.75 7.69

Zoltar 12.74 8.20 7.75 7.69

Ochiai 12.74 8.23 7.76 7.69

Jaccard 12.74 8.27 7.78 7.70

SLog 12.78 8.31 7.83 7.72

Ample 16.18 8.33 7.75 7.69

Wong3 15.31 8.44 7.75 7.69

SSqrt 13.19 8.47 7.85 7.76

Tarantula 13.19 8.57 7.88 7.71

Russell 33.52 30.51 28.06 26.96

14



Ideal performance with model

Number of tests 5 20 50 200

Predicate metrics

O8FPC 11.21 8.14 7.74 7.69

OFPC 11.21 8.18 7.75 7.69

FPC 11.96 8.54 7.88 7.71

Log 21.64 10.78 9.04 8.22

Increase 22.16 11.29 9.16 8.22

Sqrt 29.95 11.34 9.10 8.24

Context 21.82 18.03 16.51 15.64

15



Performance with model using heuristics

Num. tests 5 20 50

Heuristic Then Scan Then Scan Then Scan

O8FPC 11.21 12.21 8.14 8.14 7.74 7.74

OFPC 11.21 12.21 8.18 8.11 7.75 7.74

FPC 11.84 13.00 8.53 8.45 7.87 7.86

Log 21.38 13.33 10.82 12.43 9.06 10.03

Increase 22.07 14.23 11.38 13.00 9.18 10.16

Sqrt 30.49 14.03 11.42 12.86 9.13 10.10

Context 25.38 33.10 20.76 16.26 18.33 14.09

16



Practical performance

Metric STS+Unix Concordance

Statement metrics

Op 17.86 10.11

Wong3 18.19 10.15

Zoltar 18.23 10.11

Ochiai 21.63 11.19

Jaccard 23.64 17.68

SLog 26.23 19.59

SSqrt 26.77 20.42

Tarantula 27.09 20.03

Ample 30.16 27.53

Russell 30.02 21.03

17



Practical performance

Metric STS+Unix Concordance

Predicate metrics

OFPC 17.94 9.95

O8FPC 17.94 10.08

FPC 28.24 19.90

Context 30.18 20.00

Log 44.93 49.05

Increase 45.41 50.04

Sqrt 47.01 51.18

18



Holmes — path spectra

The Holmes system uses path spectra (sequences of statements)

p and f computed for each path, also p′ and f ′ (“observed” means

the first statement in the path is executed)

Log is used to rank paths; not all paths are returned

19



Comparative performance (???)

What proportion of bugs are found by examining 50% of the code?

Method % bugs found

Holmes — paths 78

Holmes — predicates 51

Holmes — branch only 9

CBI (predicates) 75

Statements — Op/OFPC 90

Statements — SLog 83

Statements — Log 54

Random 50

20



Conclusions

Predicate and statement spectra are based on the same raw data

but the method of aggregation used in predicate spectra retains

more information

The additional information can be reconstructed from statement

spectra with reasonable precision using heuristics

The additional information can improve performance, at least in

theory

Metrics used previously for ranking predicates can be significantly

improved

21


