
Spectral debugging: How much better can we do?

Lee Naish, Hua Jie Lee and Kotagiri Ramamohanarao

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

lee,kotagiri@unimelb.edu.au, huajie.lee@gmail.com

Abstract

This paper investigates software fault localization
methods which are based on program spectra – data
on execution profiles from passed and failed tests. We
examine a standard method of spectral fault local-
ization: for each statement we determine the num-
ber of passed and failed tests in which the statement
was/wasn’t executed and a function, or metric, of
these four values is used to rank statements accord-
ing to how likely they are to be buggy. Many differ-
ent metrics have been used. Here our main focus is
to determine how much improvement in performance
could be achieved by finding better metrics. We de-
fine the cost of fault localization using a given metric
and the unavoidable cost, which is independent of the
choice of metric. We define a class of strictly rational
metrics and argue that is reasonable to restrict atten-
tion to these metrics. We show that every single bug
optimal metric performs as well as any strictly ratio-
nal metric for single bug programs, and the resulting
cost is the unavoidable cost. We also show how any
metric can be adapted so it is single bug optimal, and
give results of empirical experiments using single- and
two-bug programs.

1 Introduction

Bugs are pervasive in software under development and
tracking them down contributes greatly to the cost of
software development. One of many useful sources
of data to help diagnosis is the dynamic behaviour of
software as it is executed over a set of test cases where
it can be determined if each result is correct or not;
each test case is said to pass or fail. Software can be
instrumented automatically to gather data known as
program spectra (Reps, Ball, Das & Larus 1997), such
as the statements that are executed, for each test case.
If a certain statement is executed in many failed tests
but few passed tests we may conclude it is likely to
be buggy. Typically the raw data is aggregated to get
the numbers of passed and failed tests for which each
statement is/isn’t executed. Some function is applied
to this aggregated data to rank the statements, from
those most likely to be buggy to those least likely. We
refer to such functions as metrics. A programmer can
then use the ranking to help find a bug.

We make the following contributions:

• We define a class of metrics we call strictly ratio-
nal metrics and argue why restricting attention
to such metrics is reasonable.

A version of this paper with a different copyright notice is
to appear at 35th Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 122. Mark Reynolds and Bruce Thomas, Ed. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

• We define the unavoidable cost of bug localiza-
tion, and show it is the minimum cost for any
strictly rational metric.

• We show that a class of previously proposed met-
rics lead to the lowest possible cost of any strictly
rational metrics for programs with single bugs.

• We show how any metric can be easily adapted
so it it optimal for single bug programs.

• We evaluate several metrics for benchmark sets
with one and two bugs.

• We perform additional experiments to help fur-
ther understand the best known metric for two-
bug programs.

• We suggest how test selection strategies can be
improved to help performance of bug localiza-
tion.

The rest of this paper is structured as follows. We
first describe spectral fault localization and define the
metrics we evaluate in this paper. Section 3 revisits
metrics and defines (strictly) rational metrics. Sec-
tion 4 describes how the cost of fault localization is
measured in this paper and also introduces the idea of
“unavoidable” cost. Section 5 discusses previous work
on optimal metrics for single bug-programs and sig-
nificantly extends those results. Section 6 shows how
any metric can be adapted so it is optimal for single
bug programs. Section 7 describes empirical experi-
ments and their results and Section 9 concludes.

2 Background — Spectral fault localization

All spectral methods use a set of tests, each classified
as failed or passed; this can be represented as a binary
vector, where 1 indicates failed and 0 indicates passed.
For statement spectra (Jones & Harrold 2005, Abreu,
Zoeteweij & van Gemund 2006, Wong, Qi, Zhao
& Cai 2007, Xie, Chen & Xu 2010, Naish, Lee &
Kotagiri 2011, Lee 2011), which we use here, we
gather data on whether each statement is executed
or not for each test. This can be represented as a
binary matrix with a row for each statement and
a column for each test; 1 means executed and 0
means not executed. For each statement, four num-
bers are ultimately produced. They are the num-
ber of passed/failed test cases in which the statement
was/wasn’t executed. We adapt the notation from
Abreu et al. (Abreu et al. 2006) — 〈anp , anf , aep , aef 〉.
The first part of the subscript indicates whether the
statement was executed (e) or not (n) and the sec-
ond indicates whether the test passed (p) or failed (f ).
We use superscripts to indicate the statement number
where appropriate. For example, a1

ep is the number
of passed tests that executed statement 1. We use
F and P to denote the total number of tests which



Table 1: Statement spectra with tests T1 . . .T5

T1 T2 T3 T4 T5 aef aep
S1 1 0 0 1 0 1 1
S2 1 1 0 1 0 2 1
S3 1 1 1 0 1 2 2

...
Res. 1 1 0 0 0 F = 2 P = 3

fail and pass, respectively. Clearly, anf = F −aef and
anp = P−aep . In most of this paper we avoid explicit
use of anf and anp ; making F and P explicit suits
our purposes better. Table 1 gives an example binary
matrix of execution data and binary vector contain-
ing the test results. This data allows us to compute
F , P and the aij values, i ∈ {n, e} and j ∈ {p, f }.

Metrics, which are numeric functions, can be used
to rank the statements. Most commonly they are
defined in terms of the four aij values. Statements
with the highest metric values are considered the most
likely to be buggy. We would expect buggy state-
ments to generally have relatively high aef values and
relatively low aep . In the example in Table 1, State-
ment 2 (S2) is executed in both failed tests and only
one passed test, which is the minimum for all state-
ments, and thus would typically be ranked highest.
The relative rank of statements 1 and 3 is not so clear
cut, since statement 3 is executed in more failed tests
but also more passed tests. One way of viewing the
ranking is that rows of the matrix are ranked accord-
ing to how “similar” they are to the vector of test
results, or how similar the set of failed tests is to the
set of tests which execute the statement. Measures of
similarity are important in classification and machine
learning, not just fault localization, and many differ-
ent metrics have been proposed; Lee (2011) evaluates
the fault localization performance of 50 metrics.

Programmers searching for a bug are expected to
examine statements, starting from the highest-ranked
statement, until a buggy statement is found. In re-
ality, programmers are likely to modify the ranking
due to their own understanding of whether the code
is likely to be buggy, based on other information such
as static analysis, the history of software changes, et
cetera. Also, checking correctness generally cannot
be done by a single statement at a time, or even one
basic block at a time. Evaluation of different ranking
methods, which we discuss in Section 4, generally ig-
nores such refinement and just depends on where the
bug(s) appear in the ranking.

Table 2 gives definitions of the metrics used here,
all of which have been evaluated for fault localiza-
tion in Naish et al. (2011) and their origins are dis-
cussed more there. Space prevents us from includ-
ing all proposed metrics. Several were originally pro-
posed for spectral fault localization: Tarantula (Jones
& Harrold 2005), which is generally credited as be-
ing the first spectral fault localization system, Zoltar
(Gonzalez 2007), Wong3, the best of several met-
rics proposed in Wong et al. (2007), and O and Op

(Naish et al. 2011). We also use a metric we refer
to as Wong4, which was devised for fault localiza-
tion. It is Heuristic III of Wong, Debroy & Choi
(2010), with α = 0.0001; we do not provide its defi-
nition here due to its complexity. Also, Ample is an
adaptation, from Abreu et al. (2006), of a metric de-
veloped for the AMPLE system (Dallmeier, Lindig
& Zeller 2005) and CBILog is an adaptation, from
Naish et al. (2011), of a metric developed for the CBI
system (Liblit, Naik, Zheng, Aiken & Jordan 2005).

Jaccard (Jaccard 1901), the oldest metric here, orig-
inally used for classification of plants, has been used
in the Pinpoint system (Chen, Kiciman, Fratkin, Fox
& Brewer 2002). Ochiai (Ochiai 1957) and Russell
(Russel & Rao 1940), both developed for other do-
mains, were first evaluated for fault localization in
Abreu et al. (2006) and Kulczynski2 (see Lourenco,
Lobo & Bação (2004)) was first evaluated for fault
localization in Naish et al. (2011). Kulczynski2 is the
best metric we know of for two and three bug pro-
grams (see Naish, Lee & Kotagiri (2009), for exam-
ple). We discuss some of these metrics in more detail
later.

3 Ranking metrics, revisited

The formulas for ranking metrics are only used in
constrained ways. We know that aef , anf , aep and
anp are all natural numbers. We can also assume
there is at least one test case. Furthermore, for any
given program and set of test cases F and P are fixed,
and aef ≤ F and aep ≤ P . Therefore it is possible to
define metrics as follows (in Table 2 we can assume
anf and anp are defined in terms of the other values):

Definition 1 (Metric) A metric is a partial func-
tion from four natural numbers, aef , aep , F and P to
a real number. It is undefined if aef > F or aep > P
or F = P = 0.

Metrics are intended to measure similarity be-
tween the set of failed tests and the set of tests which
execute a statement. The whole idea behind the ap-
proach is that in most cases there is a positive cor-
relation between execution of buggy statements and
failure, and a negative correlation between execution
of correct statements and failure. Some metrics mea-
sure dis-similarity and produce very poor rankings.
Typically the bugs are ranked towards the bottom
rather than the top; we have observed such behaviour
when we have incorrectly translated metrics which are
described using different terminology from different
application areas. Thus we can put additional con-
straints on what functions can sensibly, or rationally,
be used as metrics.

Definition 2 ((strictly)rational metric) A met-
ric M is rational if it is monotonically increas-
ing in aef and monotonically decreasing in aep: if
a ′

ef > aef then M (a ′

ef , aep ,F ,P) ≥ M (aef , aep ,F ,P)

and if a ′

ep > aep then M (aef , a
′

ep ,F ,P) ≤
M (aef , aep ,F ,P), for points where M is defined.

A metric M is strictly rational if a ′

ef > aef implies

M (a ′

ef , aep ,F ,P) > M (aef , aep ,F ,P) and a ′

ep > aep
implies M (aef , a

′

ep ,F ,P) < M (aef , aep ,F ,P), for

points where M is defined.

There are cases where the correlations are the op-
posite of what is expected, and some metric which is
not rational will perform better than rational metrics.
However, there is no way of knowing a priori whether
we have such a case and overall rational metrics per-
form better. Thus we consider it reasonable to restrict
attention to rational metrics in the search for good
metrics and when assessing “ideal” performance. Al-
most all metrics previously used for fault localization
are strictly rational. Ample is the only metric which
is not rational, because “absolute value” is used. In
Naish et al. (2011), a variation of this metric is defined
(called “Ample2”) which does not use absolute value,
and it performs significantly better than Ample.

The Russell metric does not strictly decrease as
aep increases, so it is rational but not strictly ratio-
nal, and similarly for O whenever aef < F . Metrics



Table 2: Definitions of ranking metrics used

Name Formula Name Formula Name Formula

Kulczynski2 1
2

(

aef

aef +anf
+

aef

aef +aep

)

Zoltar
aef

aef +anf +aep+
10000anf aep

aef

Jaccard
aef

aef +anf +aep

Ochiai
aef√

(aef +anf )(aef +aep)
Russell

aef

aef +anf +aep+anp
Ample

∣

∣

∣

aef

aef +anf
− aep

aep+anp

∣

∣

∣

Tarantula

aef

aef +anf
aef

aef +anf
+

aep

aep+anp

O

{

−1 ifanf > 0
anp otherwise

Op aef − aep

aep+anp+1

CBILog 2
1
c
+

log (aef +anf )

log aef

, where c =
aef

aef +aep
− aef +anf

aef +anf +anp+aep

Wong3 aef − h, where h =

{

aep if aep ≤ 2
2 + 0 · 1(aep − 2) if 2 < aep ≤ 10
2 · 8 + 0 · 001(aep − 10) if aep > 10

which are rational but not strictly rational can gener-
ally be tweaked so they are strictly rational with no
loss of performance in typical cases. O was designed
specifically for the case of single bugs, where we know
the bug is executed in all failed tests (aef = F for
the bug; we discuss this further in Section 5). If we
modify O so it gives a small negative weight to aep
when aef < F it becomes strictly rational (it pro-
duced the same rankings as Op). This does not affect
performance at all for single bug programs and gener-
ally improves performance for multiple bug programs.
Similarly, if we give a small negative weight to aep in
the Russell metric it also becomes equivalent to Op ,
which performs better in nearly all cases (see Naish
et al. (2011)). Even if non-strict rational metrics re-
main of some practical benefit, considering only strict
rational metrics leads us to additional theoretical in-
sights.

4 Measuring performance

The most common way of performance measure for
spectral fault localization is the rank of the highest-
ranked bug, as a percentage of the total number
statements; typically, only statements which are ex-
ecuted in at least one test case are counted (Abreu
et al. 2006, Wong et al. 2007, Naish et al. 2011). This
is often called the rank percentage. If a bug is ranked
highest, which is the best case, the rank is 1. Here we
give a slightly different definition, which we call rank
cost to avoid confusion, where the best case is zero.
This is more convenient for our work, and also when
averaging the performance over several programs with
different numbers of statements, which is normally
done. When bugs and non-bugs are tied in the rank-
ing we assume the bugs are ranked in the middle of
all these equally ranked statements. We discuss this
more in Section 7; there is some variation in how ties
are handled in the literature.

Definition 3 (rank cost) Given a ranking of S
statements, the rank cost is

GT + EQ/2

S

where GT is the number of correct statements ranked
strictly higher than all bugs and EQ is the number of
correct statements ranked equal to the highest ranked
bug.

For most programs and sets of tests, we cannot ex-
pect a buggy statement to be ranked strictly higher
than all correct statements, whatever metric is used to
produce the ranking. For example, all statements in

the same basic block as a bug will be be tied with the
bug in the ranking, since they will have the same aef
and aep values as the bug. Furthermore, there may
be other statements with higher aef and lower aep
values, which must be ranked higher than the bug for
all strictly rational metrics. By explicitly considering
such statements, we can determine how much of the
cost of bug localization could potentially be avoided
by choosing a different strictly rational metric, and
how much is unavoidable. We define the unavoidable
cost in a way which makes it easy to compare with
the rank cost. We first introduce some additional no-
tation concerning a partial order of statements based
on their associated spectra.

Definition 4 (=s , ≤s , <s) For two statements, x
and y, with associated spectra:

• x =s y if ax
ef = a

y
ef ∧ ax

ep = ay
ep

• x ≤s y if ax
ef ≤ a

y
ef ∧ ax

ep ≥ ay
ep

• x <s y if x ≤s y ∧ ¬(ax
ef =s a

y
ef )

Definition 5 (unavoidable cost) Given a set of S
statements and corresponding spectra, the unavoid-
able cost is the minimum of UCb, for all bugs b, where

• UCb =
GT ′

b+EQ′

b/2
S

• GT ′

b is the number of correct statements c, such
that b <s c,

• EQ ′

b, the number of correct statements c, such
that b =s c.

Proposition 1 If x ≤s y, any rational metric will
rank x below or equal to y. If x <s y, any strictly
rational metric will rank x below y.

Proof Follows from definitions. 2

Proposition 2 For any set of statements, associated
spectra and strictly rational ranking metric, the rank
cost of the resulting ranking is at least the unavoidable
cost.

Proof If b is the highest ranked bug, the rank cost is
UCb , which is at least the unavoidable cost. 2

Proposition 3 For any set of statements and asso-
ciated spectra there exists a strictly rational ranking
metric such that the rank cost of the resulting ranking
is the unavoidable cost.



Proof Let b be a bug which minimises UCb . There
is no buggy statement b′ s.t. b <s b′, otherwise the
unavoidable cost would be lower. Consider the fol-
lowing definitions:

M (aef , aep ,F ,P) = f (aef − ab
ef ) + f (ab

ep − aep)

f (x ) =

{

ǫx if x < 0
1 + ǫx otherwise,

ǫ = 1/(F + P + 1)
M is a strictly rational metric. For the bug b (and all
statements c s.t. c =s b) it has value 2. The metric
value of a statement c is greater than 2 if and only if
b <s c, and all such statements are correct. Thus the
rank cost using M is the unavoidable cost. 2

Proposition 4 For any set of statements and asso-
ciated spectra, the unavoidable cost is the minimum
rank cost for any strictly rational metric.

Proof Follows from Propositions 2 and 3. 2

If we do not restrict the class of metrics, there will
always be some metric which ranks the bug highest
and the minimum cost, ignoring ties, will always be
zero. Note that a metric which is rational but not
strictly rational can also have a cost lower than the
unavoidable cost. For example, with one passed and
one failed test, all statements could be executed in
the failed test but the passed test could execute only
the buggy statement(s). The unavoidable cost is the
highest possible cost, which is close to 1, whereas a
rational metric could have all statements tied in the
ranking, with a cost of around 0.5. Although the-
oretically interesting, such examples do not seem to
provide strong practical motivation for using metrics
which are not strictly rational.

We cannot necessarily expect to achieve a cost as
low as the unavoidable cost in practice — it simply
gives a lower bound on what we can reasonably ex-
pect using this approach to bug localization. If we can
achieve the unavoidable cost or very close to it in all
cases, we know there is no point in searching for bet-
ter metrics. If there is a wide gap between the cost we
achieve and the unavoidable cost for some buggy pro-
grams and sets of test cases we might be able to close
the gap with different metrics, but we risk making
the situation worse for other programs. There is no
single metric which achieves the unavoidable cost for
all programs — we cannot swap the order of quanti-
fiers in Proposition 3. Also, the unavoidable cost does
not give a lower bound on what can be achieved by
other fault localization methods. However, the same
methodology could potentially be applied. If, for ex-
ample, a richer form of spectral data was used, we
may be able to find an appropriate unavoidable cost
definition for that method.

5 Optimality for single bug programs

In Naish et al. (2011), optimality of metrics is intro-
duced and “single bug” programs are the focus. In
order to establish any technical results, we must be
clear as to what constitutes a bug, so it is clear if a
program has a single bug. In Naish et al. (2011) a bug
is defined to be “a statement that, when executed, has
unintended behaviour”. A programmer may make a
single mistake which leads to multiple bugs according
to this definition. For example, when coding various
formulas which use logarithms, the programmer may
use the wrong base for all the logarithms. Also a mis-
take in a single #define directive in a C program can
lead to multiple bugs. The #define directive is not
a statement which is executed and no spectral data
is generated for it, but several statements which use
the macro may behave incorrectly.

In order to understand the fault localization prob-
lem better, a very simple model program, with just
two if-then-else statements and a single bug is pro-
posed in Naish et al. (2011), along with a very sim-
ple way of measuring performance of a metric with a
given set of test cases, based on whether the bug is
ranked top, or equal top. A set of test cases corre-
sponds to a multiset of execution paths through the
program. Performance depends on the multiset, but
overall performance for T tests is determined by the
average performance over all possible multisets of T
execution paths. Using a combinatorial argument,
the O metric is shown to be “optimal”: its overall
performance is at least as good as any other metric,
for any number of tests. Although O is not strictly
rational, there are strictly rational metrics such as
Op which are also optimal, so restricting attention
to strictly rational metrics does not reduce poten-
tial performance, at least in this case. There are two
conditions for a metric to be optimal for this simple
model and performance measure (here we show the
definition has much wider utility):

Definition 6 (Single bug optimality) A metric
M is single bug optimal if

1. when aef < F, the value returned is al-
ways less than any value returned when aef =
F, that is, ∀F∀P∀aep∀a ′

ep if aef < F then

M (aef , aep ,F ,P) < M (F , a ′

ep ,F ,P), and

2. when aef = F, M is strictly decreasing in aep,
that is, if a ′

ep > aep then M (F , a ′

ep ,F ,P) <
M (F , aep ,F ,P).

The first condition is motivated by the fact that for
single bug programs, the bug must be executed in all
failed tests. Since aef = F for the bug, statements
for which aef < F are best ranked strictly lower.
The second condition is motivated by the fact that
the bug tends to have a lower aep value than correct
statements, because some executions of the bug lead
to failure, the model program is symmetric with re-
spect to buggy and correct statements, and all possi-
ble multisets of executions paths are used to evaluate
overall performance. In addition to proving optimal-
ity under these very artificial conditions, Naish et al.
(2011) conjectured such metrics were optimal for a
wider class of models. In addition, empirical experi-
ments were conducted with real programs and the op-
timal metrics performed better than other proposed
metrics when measured using rank percentages.

Here we give an optimality result for single bug
programs which does not constrain us to a simplistic
program structure or performance measure or a par-
ticular distribution of sets of test cases. Indeed, we
prove optimal performance for every set of test cases,
not just overall performance. We obtain this much
more widely applicable technical result, which also
has a much simpler proof, by restricting attention to
strictly rational metrics.

Proposition 5 Given any program with a single bug,
any set of test cases and any single bug optimal metric
M used to rank the statements, the rank cost equals
the unavoidable cost.

Proof The rank cost is GT+EQ/2
S

. Since there is a

single bug, b, the unavoidable cost is
GT ′

b+EQ′

b/2
S

and

ab
ef = F . M is single bug optimal so any statement

c ranked strictly higher than the bug must have the
same aef value and a strictly lower aep value (so b <s

c) and any statement ranked equal to the bug must
have the same aef value and the same aep value as the



bug (so b =s c). Thus EQ = EQ ′

b and GT = GT ′

b .
2

Proposition 6 Given any program with a single bug,
any set of test cases and any single bug optimal metric
M used to rank the statement, the rank cost using M
is no more than the rank cost using any other strictly
rational metric.

Proof Follows from Propositions 2 and 5. 2

The rank cost is not necessarily the best mea-
sure of performance. However, a consequence of this
proposition is that for any cost measure which is
monotonic in the rank cost, single bug optimal met-
rics have a lower or equal cost than any other rational
metric. For example, optimality applies with respect
to rank percentages and the simple cost measure of
Naish et al. (2011) which only examines the state-
ment(s) ranked (equal) top. Alternatively, a more
complex non-linear cost function could be considered
desirable, since the time spent finding a bug typically
grows more than linearly in the number of different
lines of code examined.

Drawing definitive conclusions from empirical ex-
periments such as those of Naish et al. (2011) is nor-
mally impossible because the results may be depen-
dent on the set of benchmark programs used, or the
sets of test cases, or the details of the performance
evaluation method. However, in this case we can use
Proposition 6 to remove any doubt that the “optimal”
metrics are indeed better than other metrics for sin-
gle bug programs. Interestingly, there was one case
found in Naish et al. (2011) where the optimal met-
rics did not perform the best overall — when sets
of test cases were selected so that the buggy state-
ment in the model program was executed in nearly
every test. The only better metric was Russell, which
benefits from a large number of ties in such cases, as
discussed earlier. It was also noted that Russell per-
formed better than the optimal metrics for some of
the empirical benchmark programs, though its overall
performance was worse. From Proposition 6 we know
such behaviour can only occur for metrics which are
not strictly rational.

6 Optimizing metrics for single bugs

Op was proposed as a metric which was single bug
optimal and also expected to perform rather better
than O for multiple bug programs. While this is true,
experiments have shown that Op does not perform
particularly well for multiple bug programs (Naish
et al. 2009). The two conditions for single bug opti-
mality of a metric place no constraint on the relative
ordering of statements for which aef < F . Any metric
can thus be adapted so it becomes optimal for single
bug by adding a special case for aef = F — we just
need to ensure it is decreasing in aep and larger than
any other value possible with the same F and P .

Definition 7 (Optimal single bug version) The
optimal single bug version of a metric M , denoted
O1(M ) is defined as follows.

O1(M )(aef , aep ,F ,P)

=

{

K + 1 + P − aep ifaef = F
M (aef , aep ,F ,P) otherwise,

where K is the maximum of {M (x , y ,F ,P)|x < F ∧
y ≤ P}.

Proposition 7 O1(M ) is single bug optimal for all
metrics M .

Table 3: Description of Siemens + Unix benchmarks
Program 1 Bug 2 Bugs LOC Tests

tcas 37 604 173 1608
schedule 8 — 410 2650
schedule2 9 27 307 2710
print tok 6 — 563 4130
print tok2 10 10 508 4115
tot info 23 245 406 1052
replace 29 34 563 5542

Col 28 147 308 156
Cal 18 115 202 162
Uniq 14 14 143 431
Spline 13 20 338 700
Checkeq 18 56 102 332
Tr 11 17 137 870

Proof When aef = F , O1(M ) is clearly strictly de-
creasing in aep and the value returned is at least K+1,
since aep ≤ P , so it is greater than any value returned
when aef < F . 2

In practice, many metrics range between 0 and 1
so we could just choose K = 1 in all cases for these
metrics. A larger fixed value, such as K = 999999 is
sufficient for all metrics proposed to date unless there
are a very large number of test cases.

If aef < F for a large proportion of statements,
O1(M ) will produce a similar ranking to M and if M
works very well for multiple bug programs, we would
expect O1(M ) to also work well. Of course, O1(M )
will also work as well as any other rational metric for
single bug programs.

7 Experimental results

We performed empirical evaluation using a collection
of small C programs: the Siemens Test Suite (STS),
from the Software Information Repository (Do, El-
baum & Rothermel 2005), plus several small Unix
utilities, from Wong, Horgan, London & Mathur
(1998). These, particularly STS, are widely used for
evaluating spectral ranking methods. Table 3 gives
the names of the programs (the first seven are from
STS), and the numbers of single bug and two-bug
versions, lines of code (LOC) and test cases. A small
number of programs in the repository were not used
because there was more than one bug according to
our definition (for example, a #define was incorrect)
or we could not extract programs spectra. We used
the gcov tool, part of the gcc compiler suite, and it
cannot extract spectra from programs with runtime
errors. We generated the two-bug versions from pairs
of single-bug versions, eliminating resulting programs
if they encountered runtime errors, as in Naish et al.
(2009). This collection of two-bug programs is far
from ideal. However, most collections of buggy pro-
grams have a very strong bias towards single bugs
or have only a relatively small number of program
versions. Obtaining better benchmarks is clearly a
priority.

We conducted experiments to compute the aver-
age unavoidable cost and the rank cost for each met-
ric and the single bug optimal version of the metric,
for both one and two bug benchmark sets. Table 4
gives the results. The unavoidable costs are given in
the second row. The last column of figures uses the
optimal single bug version of the metrics. For the sin-
gle bug benchmark, the optimal single bug version of
each metric gives a rank cost of 16.87, which is the
unavoidable cost, so we omit these from the table.
The original versions of the metrics range in perfor-



Table 4: Unavoidable and rank costs
Benchmark 1 Bug 2 Bug 2 Bug
Unavoidable 16.87 11.72 O1(. . .)

O 16.87 23.75 23.75
Op 16.87 21.64 21.64
Wong3 17.20 21.34 21.56
Zoltar 17.24 19.32 21.42
Kulczynski2 18.07 18.32 21.24
Ochiai 20.63 18.95 21.18
Wong4 21.23 21.51 21.60
Jaccard 22.65 19.87 21.20
CBILog 25.23 21.04 21.56
Tarantula 26.10 21.91 21.54
Ample 29.17 23.26 21.75
Russell 29.02 30.88 21.82

Table 5: Two bug rank cost wrt aef = F category
aef = F 2 Bugs 1 Bug 1 Bug No Bug

for . . . same inverted
% of Cases 44 35 11 10
% aef = F 67 51 44 37
Unavoidable 17.55 9.53 2.43 3.25

Kul2 18.62 21.91 4.52 17.80
O1(Kul2) 17.55 20.88 17.51 42.43
Op 17.55 20.88 17.51 46.50
O 17.55 20.88 17.51 68.04
Russell 32.96 25.40 21.83 48.40

mance for the single bug benchmark set, with O and
Op being the best, and equal to the unavoidable cost,
as expected.

For the two bug benchmark set, the unavoidable
cost, 11.72, is significantly lower. This is to be ex-
pected since it is essentially the minimum of the un-
avoidable costs of two bugs. However, the rank costs
are higher for most metrics, and the best rank cost,
18.32, for Kulczynski2, is significantly higher than the
unavoidable cost. Although it cannot be guaranteed,
it seems likely better metrics to exist. The optimal
single bug versions of the metrics show much less vari-
ation in rank cost and, unfortunately, perform signif-
icantly worse than the best metrics. We conducted
additional experiments to better understand the per-
formance of Kulczynski2 and the single bug optimal
metrics.

Table 5 summarises the results. It breaks down
the 2-bug benchmark set into four categories: the
programs for which aef = F for both bugs, the pro-
grams for which aef = F for just one bug where Op

and Kulczynski2 rank the bugs in the same order, the
programs for which aef = F for just one bug where
Op and Kulczynski2 rank the bugs in the opposite
(inverted) order, and the programs for which aef = F
for no bug. The first row of figures gives the per-
centages of cases for these four categories. Overall, in
90% of cases at least one bug is executed in all failed
tests, which is generally helpful for the single bug op-
timal metrics. The second row gives the percentages
of correct statements for which aef = F in the four
categories. On average, 57% of correct statements
are used in all failed tests, so the “special case” in O1
actually applies to most statements, and O1 affects
the ranking more than expected for this benchmark
set. This is the main reason why O1 performs more
poorly than anticipated. The second row gives the
average unavoidable cost for each category. It shows
significant variation in unavoidable cost and we dis-
cuss this further below. The following lines of Table
5 give the average rank cost (percentage) for the dif-

Table 6: Two bug rank cost wrt %aef = F

%aef = F <20 20–40 40–60 60–80 ≥80
%of Cases 10.6 8.1 19.0 57.9 4.2

Kul2 7.05 10.99 17.67 21.33 19.65
O1(Kul2) 5.47 16.08 21.51 24.51 21.89
Op 6.24 19.17 21.64 24.58 21.75
O 16.70 23.39 23.57 24.96 22.37
Russell 8.35 22.59 26.11 36.26 43.96

ferent metrics; Kulczynski2 is abbreviated to Kul2.
The three single bug optimal metrics have equal

rank cost for the first three categories since the top-
ranked bug has aef = F and the ranking of all such
statements is the same with these metrics. The differ-
ence between these metrics and Russell indicates the
usefulness of aep —Russell ranks according to aef and
essentially ignores aep . In the first category, our treat-
ment of ties is (arguably) unfair to Russell — 67% of
statements, including both bugs, are tied at the top of
the ranking. Some researchers report the “worst case”
(67%) in such situations and assume the bugs are
ranked at the bottom of this range (Chilimbi, Liblit,
Mehra, Nori & Vaswani 2009); this over-estimation
of cost is discussed in Naish, Lee & Kotagiri (2010).
Some researchers report both the “best case” (0%)
and the “worst case” (Wong et al. 2007). Here we
assume both bugs are ranked in the middle of the
range, but even this leads to some over-estimation. If
both bugs were to appear at a random point amongst
these ties, the top-most bug would have an average
cost of around 22% rather than 33%. Similarly, in
the fourth category, the O metric has both bugs tied
with 63% of the correct statements, at the bottom of
the ranking, and a fairer treatment of ties would give
an average cost of 59% rather than 68%. With the
better metrics there are far fewer ties and thus the
over-estimation of cost is much less and we doubt it
affects any overall conclusions. Our treatment of ties
was motivated by much simpler analysis and could be
refined further.

Kulczynski2 performs slightly worse (around
1.1%) than O1(Kulczynski2) for the first two cat-
egories, which cover the majority (79%) of cases. This
is because around 1.1% of correct statements have
lower aef and significantly lower aep values than the
bugs, and they overtake both bugs in the ranking.
However, in the third category, Kulczynski2 performs
extremely well. Almost half the statements have
aef = F and when a bug with a lower aef and aep
is placed higher in the ranking, it overtakes nearly
all these statements. Although this category account
for only 11% of cases, it more than compensates for
the cases when correct statements overtake the bugs.
Kulczynski2 also performs significantly better than
the other metrics in the last category. Russell and all
the single bug optimal metrics rank the statements
with aef = F highest, so the rank cost must be at
least 37%, whereas Kulczynski2 does even better than
its overall performance.

The unavoidable cost figures also underscore the
importance of the number of statements which are
executed in all failed tests. In the first category,
where both bugs are executed in all failed tests, we
may intuitively expect bug localization to be easiest
and the good metrics should achieve their best per-
formance. However, it actually has the highest un-
avoidable cost, by a large margin. As well as both
bugs being executed in all failed tests, on average,
two thirds of correct statements are also executed in
all failed tests. Table 6 gives an alternative break-
down of the two-bug performance figures, based on



the percentage of statements which are executed in
all failed tests. Most cases fall into the 60–80% range
for this benchmark set. Performance for all metrics
drops as the percentage increases, except when the
percentage is very high. When the percentage is less
than 20%, O1(Kulczynski2) performs better than all
other metrics.

The good overall performance of Kulczynski2 com-
pared to O1(Kulczynski2) and other single bug op-
timal metrics is thus strongly linked to the number
of statements with aef = F . For larger programs
we would expect this proportion to be significantly
smaller. We know from Naish et al. (2011) that for
the Space benchmark (around 9000 LOC) the rank
percentages for the better metrics is around one tenth
that of the Siemens Test Suite; this is partly due to a
smaller percentage of statements with aef = F . We
could also improve overall performance by initially
computing this percentage using the spectra for all
statements, then using it to select either Kulczyn-
ski2, if it is relatively large, or O1(Kulczynski2), for
example.

We also note that the tests suites are designed pri-
marily to detect the existence of bugs, not find the lo-
cation of bugs. There is a desire for a large coverage of
statements. For example the STS tests were designed
with the aim of having every statement executed by
at least 30 tests. Tests which execute a large percent-
age of the code are generally better for detecting the
existence of bugs but are worse for locating bugs. We
are hopeful that with better test selection strategies
and larger programs, single bug optimal metrics can
be of significant practical benefit.

8 Other related work

In Section 2 we referred to several papers which in-
troduced new metrics for spectral fault localization,
or evaluated metrics which had previously been intro-
duced for other domains. Here we briefly review other
related work. There are a couple of approaches which
post-process the ranking produced which are equival-
ent to adjusting the metric, similar to our O1 func-
tion. The post-ranking method of Xie et al. (2010)
essentially drops any statement which is not executed
in any failed test to the bottom of the ranking. That
of Debroy, Wong, Xu & Choi (2010) ranks primarily
on the aef value and secondarily on the original rank.
Thus if the original ranking is done with a strictly
rational metric, the resulting ranking is the same as
that produced by Op .

Other variations on the statement spectra ranking
method described in this paper attempt to use addi-
tional and/or different information from the program
executions. Execution frequency counts for state-
ments, rather than binary numbers, are used in Lee,
Naish & Kotagiri (2010) to weight the different aij
values and in Naish et al. (2009) aggregates of the
columns of the matrix are used to adjust the weights
of different failed tests. The RAPID system (Hsu,
Jones & Orso 2008) uses the Tarantula metric but
uses branch spectra rather than statement spectra.

The CBI (Liblit et al. 2005) and SOBER (Liu,
Yan, Fei, Han & Midkiff 2005) systems use predi-
cate spectra: predicates such as conditions of if-then-
else statements are instrumented and data is gath-
ered on whether control flow ever reaches that point
and, if it does, whether the predicate is ever true.
CBI uses sampling to reduce overheads but aggregates
the data so there are four numbers for each predi-
cate, which are ranked in a similar way to how state-
ments are ranked using statement spectra. SOBER
uses frequency counts and a different form of statis-
tical ranking method. The Holmes system (Chilimbi

et al. 2009) uses path spectra: data is collected on
which acyclic paths through single functions are ex-
ecuted or “reached ”, meaning the first statement
is executed but not the whole path, and the paths
are ranked in a similar way to predicate ranking in
CBI. Statement and predicate spectra are compared
in Naish et al. (2010), and it is shown that the aggre-
gate data used in predicate spectra methods is more
expressive than that used for statements spectra and
modest gains in theoretical performance are demon-
strated. The data collected for path spectra contains
even more information and thus could potentially be
used to improve performance further.

9 Conclusion

Spectra-based techniques are a promising approach
to software fault localization. Here we have used one
of the simplest and most popular variants: ranking
statements according to some metric, a function of
the numbers of passed and failed tests in which the
statement is/isn’t executed. We have identified the
class of strictly rational metrics, which are strictly
increasing in the number of failed test executions and
strictly decreasing in the number of passed test ex-
ecutions. We have argued that it is reasonable to
restrict attention to this class of metrics, and there is
no apparent evidence that doing so reduces fault lo-
calization performance. Having made this restriction,
we can put a lower bound on the cost of fault localiza-
tion — the “unavoidable cost”. No strictly rational
metric can achieve a lower cost.

We have shown that single bug optimal metrics
perform at least as well as any other strictly ratio-
nal metric, for various reasonable measures of per-
formance, for all programs with a single bug and all
sets of test cases. This significantly extends a previ-
ous theoretical result and shows that we cannot do
any better with this variant of spectral fault localiza-
tion for single-bug programs. We also showed how
any metric can be adapted so it becomes single bug
optimal.

Performance of spectral fault localization on
multiple-bug programs is much less well understood.
We have performed empirical experiments with a va-
riety of metrics on a benchmark set of small two-
bug programs. All metrics resulted in costs signifi-
cantly greater than the unavoidable cost on average.
Also, the single bug optimal metrics had significantly
greater cost than the best metrics overall. We have
identified one reason for this: typically a large propor-
tion of statements are executed in every failed test.
We know that this proportion is smaller in bench-
marks with larger programs. Also, it may be practical
to reduce it further by careful creation and selection
of test cases. For the subset of our two-bug bench-
mark set where less than 20% of statements were ex-
ecuted in all failed tests, the best performance was
achieved by the single bug optimal version of a met-
ric known to perform well on multiple bug programs.
Overall, there seem reasonable prospects for improv-
ing performance when there is a mixture of single-
and multiple-bug programs, which is what real fault
localization tools are faced with.

References

Abreu, R., Zoeteweij, P. & van Gemund, A. (2006),
‘An evaluation of similarity coefficients for soft-
ware fault localization’, PRDC’06 pp. 39–46.

Chen, M., Kiciman, E., Fratkin, E., Fox, A. & Brewer,
E. (2002), ‘Pinpoint: Problem determination in



large, dynamic internet services’, Proceedings of
the DSN pp. 595–604.

Chilimbi, T., Liblit, B., Mehra, K., Nori, A. &
Vaswani, K. (2009), HOLMES: Effective sta-
tistical debugging via efficient path profiling,
in ‘Proceedings of the 2009 IEEE 31st Inter-
national Conference on Software Engineering’,
IEEE Computer Society, pp. 34–44.

Dallmeier, V., Lindig, C. & Zeller, A. (2005),
Lightweight bug localization with AMPLE, in
‘Proceedings of the Sixth International Sympo-
sium on Automated Analysis-driven Debugging’,
ACM, pp. 99–104.

Debroy, V., Wong, W., Xu, X. & Choi, B. (2010),
A Grouping-Based Strategy to Improve the Ef-
fectiveness of Fault Localization Techniques, in
‘10th International Conference on Quality Soft-
ware , 2010. QSIC 2010’.

Do, H., Elbaum, S. & Rothermel, G. (2005), ‘Sup-
porting Controlled Experimentation with Test-
ing Techniques: An Infrastructure and its Po-
tential Impact’, Empirical Software Engineering
10(4), 405–435.

Gonzalez, A. (2007), Automatic Error Detection
Techniques based on Dynamic Invariants, Mas-
ter’s thesis, Delft University of Technology, The
Netherlands.

Hsu, H., Jones, J. & Orso, A. (2008), RAPID: Identi-
fying bug signatures to support debugging activ-
ities, in ‘23rd IEEE/ACM International Confer-
ence on Automated Software Enginering, 2008.
ASE 2008’, pp. 439–442.

Jaccard, P. (1901), ‘Étude comparative de la distri-
bution florale dans une portion des Alpes et des
Jura’, Bull. Soc. Vaudoise Sci. Nat 37, 547–579.

Jones, J. & Harrold, M. (2005), ‘Empirical evalua-
tion of the tarantula automatic fault-localization
technique’, Proceedings of the 20th ASE
pp. 273–282.

Lee, H. J. (2011), Software Debugging Using Program
Spectra , PhD thesis, University of Melbourne.

Lee, H. J., Naish, L. & Kotagiri, R. (2010), Effective
Software Bug Localization Using Spectral Fre-
quency Weighting Function, in ‘Proceedings of
the 2010 34th Annual IEEE Computer Software
and Applications Conference’, IEEE Computer
Society, pp. 218–227.

Liblit, B., Naik, M., Zheng, A., Aiken, A. & Jor-
dan, M. (2005), ‘Scalable statistical bug isola-
tion’, Proceedings of the 2005 ACM SIGPLAN
40(6), 15–26.

Liu, C., Yan, X., Fei, L., Han, J. & Midkiff,
S. P. (2005), ‘Sober: statistical model-based
bug localization’, SIGSOFT Softw. Eng. Notes
30(5), 286–295.

Lourenco, F., Lobo, V. & Bação, F. (2004), ‘Binary-
based similarity measures for categorical data
and their application in Self-Organizing Maps’,
JOCLAD .

Naish, L., Lee, H. J. & Kotagiri, R. (2009), Spectral
debugging with weights and incremental rank-
ing, in ‘16th Asia-Pacific Software Engineering
Conference, APSEC 2009’, IEEE, pp. 168–175.

Naish, L., Lee, H. J. & Kotagiri, R. (2010), State-
ments versus predicates in spectral bug local-
ization, in ‘Proceedings of the 2010 Asia Pa-
cific Software Engineering Conference’, IEEE,
pp. 375–384.

Naish, L., Lee, H. J. & Kotagiri, R. (2011), ‘A
model for spectra-based software diagnosis’,
ACM Transactions on software engineering and
methodology (TOSEM) 20(3).

Ochiai, A. (1957), ‘Zoogeographic studies on the
soleoid fishes found in Japan and its neighbour-
ing regions’, Bull. Jpn. Soc. Sci. Fish 22, 526–
530.

Reps, T., Ball, T., Das, M. & Larus, J. (1997), The
use of program profiling for software mainte-
nance with applications to the year 2000 prob-
lem, in ‘Proceedings of the 6th European Confer-
ence held jointly with the 5th ACM SIGSOFT’,
Springer-Verlag New York, Inc. New York, New
York, USA, pp. 432–449.

Russel, P. & Rao, T. (1940), ‘On habitat and asso-
ciation of species of Anopheline larvae in south-
eastern Madras’, J. Malar. Inst. India 3, 153–
178.

Wong, W. E., Debroy, V. & Choi, B. (2010), ‘A fam-
ily of code coverage-based heuristics for effective
fault localization’, Journal of Systems and Soft-
ware 83(2).

Wong, W. E., Qi, Y., Zhao, L. & Cai, K. (2007), ‘Ef-
fective Fault Localization using Code Coverage’,
Proceedings of the 31st Annual IEEE Computer
Software and Applications Conference pp. 449–
456.

Wong, W., Horgan, J., London, S. & Mathur, A.
(1998), ‘Effect of Test Set Minimization on Fault
Detection Effectiveness’, Software-Practice and
Experience 28(4), 347–369.

Xie, X., Chen, T. Y. & Xu, B. (2010), Isolating Suspi-
ciousness from Spectrum-Based Fault Localiza-
tion Techniques, in ‘10th International Confer-
ence on Quality Software , 2010. QSIC 2010’.


