
Spectral debugging: How much better can we do?

Lee Naish

Hua Jie (Jason) Lee

Kotagiri Ramamohanarao

Computing and Information Systems

University of Melbourne

Slides, paper etc. are on the web:

http://www.cs.mu.oz.au/˜lee/papers/relscr/

1



Outline

Background: Spectral debugging

Rational metrics

Measuring performance

Single-bug optimality

Experimental results

Conclusion

2



Using spectra for bug localization

Basic idea:

Execute the program multiple times using a test suite where we can

tell if each result is correct or not, gathering data about each

execution

For each statement/. . . , estimate how likely it is to be buggy based

on the data gathered

Rank the statements accordingly, then check the code manually,

starting with the highest ranked statement until the bug is found

(or we give up)

3



Statement spectra

Collect data on which statements are executed for each test

We count

• The total number of failed tests, F ,

• The total number of passed tests, P ,

and for each statement Si, the number of

• failed tests in which it was executed, aief , and

• passed tests in which it was executed, aiep.

(the number of failed/passed tests not executing Si is implicit in

our presentation)

4



Statement spectra example

The raw data is a binary matrix (1 means the statement was

executed in the test) and a binary vector (1 means the test failed)

We compute F , P and the aef and aep for each statement, eg

T1 T2 T3 T4 T5 aef aep

S1 1 0 0 1 0 1 1

S2 1 1 0 1 0 2 1

S3 1 1 1 0 1 2 2
...

Res. 1 1 0 0 0 F = 2 P = 3

Measure “similarity” of matrix rows and result vector

5



Some metrics used for ranking

Many similarity metrics have been used, in a wide variety of

domains, eg

Name Formula Name Formula

Jaccard
aef

F+aep
Tarantula

aef

F
aef

F
+

aep

P

Russell
aef

F+P Zoltar
aef

F+aep+
10000F−aef∗aep

aef

Ample
∣

∣

aef

F − aep

P

∣

∣ Ochiai
aef√

F∗(aef+aep)

Op aef − aep

P+1 Kulczynski2 1
2

(

aef

F +
aef

aef+aep

)

Op performs best in our single-bug experiments and has been

proven optimal in a very restricted setting

Kulczynski2 performs best in our multiple-bug experiments

6



Rational ranking metrics

A (ranking) metric is a partial function from four natural numbers,

aef , aep, F and P to a real number. It is undefined if aef > F or

aep > P

Metrics measure similarity

A metric M is rational if it is monotonically increasing in aef and

monotonically decreasing in aep: if a
′

ef > aef then

M(a′ef , aep, F, P ) ≥ M(aef , aep, F, P ) and if a′ep > aep then

M(aef , a
′

ep, F, P ) ≤ M(aef , aep, F, P ), for points where M is defined

We define strictly rational metrics similarly, using strict inequalities

Ample is the only proposed metric we know of which is not

rational; it performs very poorly overall

Russell is rational but not strictly rational; if we tweek it to

become strictly rational it is equivlent to Op and performs better

7



Measuring performance — rank cost

Given a ranking of S statements, the rank cost is

GT + EQ/2

S

where GT is the number of correct statements ranked strictly

higher than all bugs and EQ is the number of correct statements

ranked equal to the highest ranked bug

This is similar to measures used by others

Ties in the ranking are handled in various ways; we think our

approach is reasonable and it simplifies various things

8



Partial order for statements

The spectra associated with statements (plus rationality

considerations) gives rise to a natural partial order

For two statements, x and y, with associated spectra:

• x ≤s y if axef ≤ ayef ∧ axep ≥ ayep

• x =s y if axef = ayef ∧ axep = ayep

• x <s y if x ≤s y ∧ ¬(axef =s ayef )

If x ≤s y, any rational metric will rank x below or equal to y

(rational metrics lead to a total order which is compatible with the

partial order)

If x <s y, any strictly rational metric will rank x below y

9



Unavoidable cost

Given a set of S statements and corresponding spectra, the

unavoidable cost is the minimum of UCb, for all bugs b, where

• UCb =
GT ′

b+EQ′

b/2
S

• GT ′

b is the number of correct statements c, such that b <s c,

• EQ′

b, the number of correct statements c, such that b =s c

For any set of statements and associated spectra, the unavoidable

cost is the minimum rank cost for any strictly rational metric

Its clear the unavoidable cost is less than or equal to the rank cost

for any strictly rational metric

With perfect knowledge, its possible to construct a strictly rational

metric which has exactly the unavoidable cost

10



Unavoidable cost (cont.)

Let b be a bug which minimises UCb

We can define a strictly rational metric M which achieves the

unavoidable cost as follows:

M(aef , aep, F, P ) = f(aef − abef ) + f(abep − aep)

f(x) =







ǫx if x < 0

1 + ǫx otherwise,

ǫ = 1/(F + P + 1)

The value for a statement c is 2 iff b =s c (unavoidable ties) and

greater than 2 iff b <s c

11



Unavoidable cost (cont.)

M()

aep

aef

abep

abef

P

F

12



Unavoidable cost (cont.)

Metrics which are not strictly rational can result in less than the

unavoidable cost

For example, the metric can return a very high value when

aef = abef and aep = abep

But we have no way of knowing a priori which metrics will perform

the best (we don’t know abef and abep if we don’t know the buggy

statement b)

Such metrics will typically perform poorly for other programs and

spectra

13



Single-bug optimality

A metric M is single bug optimal if

1. when aef < F , the value returned is always less than any value

returned when aef = F , that is, ∀F∀P∀aep∀a′ep if aef < F then

M(aef , aep, F, P ) < M(F, a′ep, F, P ), and

2. when aef = F , M is strictly decreasing in aep, that is, if

a′ep > aep then M(F, a′ep, F, P ) < M(F, aep, F, P ).

Optimality was shown previously for a single “model” program

(with just four statements), using a simplistic performance measure

(based on how often the bug was ranked top or equal-top) and

assuming a particular distribution of sets of sets of tests

There is also empirical evidence such metrics perform best with

single-bug programs

14



Single-bug optimality (cont.)

Given any program with a single bug, any set of test cases and any

single bug optimal metric M used to rank the statements, the rank

cost equals the unavoidable cost

Thus, the cost is no more than the rank cost using any other

strictly rational metric

The same applies with most other reasonable measures of cost

The only previously known cases of optimal metrics being

out-performed for single-bug programs are with the Russell metric,

which benefits from ties in these cases

15



Optimizing metrics for single bugs

Any metric can be tweeked so it is single-bug optimal

The optimal single bug version of a metric M , denoted O1(M) is

defined as follows

O1(M)(aef , aep, F, P ) =







K + 1 + P − aep if aef = F

M(aef , aep, F, P ) otherwise,

where K is the maximum of {M(x, y, F, P )|x < F ∧ y ≤ P}
In practice we can just use (eg) K=999999

If aef < F for a large proportion of statements, O1(M) will

produce a similar ranking to M

16



Experimental results

Benchmark 1 Bug 2 Bug 2 Bug

Unavoidable 16.87 11.72 O1(. . .)

Op 16.87 21.64 21.64

Wong3 17.20 21.34 21.56

Zoltar 17.24 19.32 21.42

Kulczynski2 18.07 18.32 21.24

Ochiai 20.63 18.95 21.18

Jaccard 22.65 19.87 21.20

Tarantula 26.10 21.91 21.54

Ample 29.17 23.26 21.75

Russell 29.02 30.88 21.82

17



Experimental results (cont.)

To understand relative performance we looked at cases where

aef = F in more detail, and compared Op and Kulczynski2 rankings

aef = F for . . . 2 Bugs 1 Bug 1 Bug No Bug
same inverted

% of Cases 44 35 11 10

% aef = F 67 51 44 37

Unavoidable 17.55 9.53 2.43 3.25

Kulczynski2 18.62 21.91 4.52 17.80

O1(Kulczynski2) 17.55 20.88 17.51 42.43

Op 17.55 20.88 17.51 46.50

Russell 32.96 25.40 21.83 48.40

18



Experimental results (cont.)

Breakdown according to percentage of statements executed in all

failed tests:

% aef = F <20 20–40 40–60 60–80 ≥80

% of Cases 10.6 8.1 19.0 57.9 4.2

Kul2 7.05 10.99 17.67 21.33 19.65

O1(Kul2) 5.47 16.08 21.51 24.51 21.89

Op 6.24 19.17 21.64 24.58 21.75

O 16.70 23.39 23.57 24.96 22.37

Russell 8.35 22.59 26.11 36.26 43.96

19



Conclusions

Restricting attention to strictly rational metrics seems reasonable

from a philosophical and empirical perspective

It allows us to give a much stronger result for single-bug optimal

metrics — for single-bug programs we can’t improve performance

All metrics can be adapted so they are single-bug optimal

Performance of single-bug optimal metrics on our multiple-bug

benchmarks is adversely affected by the large proportion of

statements which are executed in all failed tests

This proportion is smaller for larger benchmarks and potentially

could be reduced by different test selection strategies

There are reasonable prospects for improving performance when

there is a mixture of single- and multiple-bug programs

20


