
A three-valued semantics for logic programmers

Lee Naish

Computer Science and

Software Engineering

University of Melbourne

1

Outline

Motivation and Background

Three-valued semantics:

• procedural

• fixed point

• model theoretic

Verification

Conclusion

2

Why bother with semantics?

• Philosophy

• Language design

• Implementation

• Programming

• Verification

• Debugging

3

What question are we answering?

What is the meaning of this program?

Does this program mean what I intend?

4

Debugging

This work came out of work on declarative debugging

Possibly surprising since those who work on semantics consider

weird useless programs to be “interesting” rather than buggy

But often its during debugging that we think most about the

relationship between our code, its behaviour and our intentions (ie,

programming language semantics)

Previous debugging work classified (sub)computations as being

correct, erroneous or “inadmissible”

5

Verification

Our technical results show that your logic program has no wrong

answers and no missing answers (in “all solutions” computations

which terminate normally) if

• Each ground atom is considered true, false or inadmissible,

• Each true atom is the head of a clause instance with a true

body (all conjuncts are true), and

• For each false atom, all matching ground clause instances have

false bodies (at least one conjunct is false)

Assumes negated calls are ground when they are selected

6

Traditional semantics: Model theory

(Simple case without negation)

Interpretations map each ground atom to true or false (typically

we refer to the set of true atoms)

Classical truth tables are used for conjunction and disjunction

M is a model if for every clause instance

H ← B, if B is in M then H is in M (no clause instance F← T)

The intersection of two models is a model, so a least model exists,

which is the least Herbrand model

7

Traditional semantics: fixed points

The immediate consequence operator:

TP (M) = {H|H ← B1, B2, . . . BN is a ground clause instance and

{B1, B2, . . . BN} ⊆M}

TP is monotonic; a least fixed point exists — start with φ and

apply TP until fixed point is reached

Useful for program analysis and alternative “bottom up” evaluation

strategies

8

Traditional semantics: Procedural

SLD resolution gives a “top down” goal directed evaluation

strategy (top-down search of an SLD tree)

The success set, SS, is the set of ground atoms with successful

derivations

The least model, least fixed point and success set all coincide!

Soundness: If the interpretation M is a model then any successful

atom is in M

9

Beautiful, except...

... intended interpretations are typically not models!

% merge(As, Bs, Cs): Cs is the sorted list of numbers

% which is the multiset union of sorted lists As and Bs

merge([], Bs, Bs).

merge(A.As, [], A.As).

merge(A.As, B.Bs, A.Cs) :- A =< B, merge(As, B.Bs, Cs).

merge(A.As, B.Bs, B.Cs) :- A > B, merge(A.As, Bs, Cs).

Programmers find such a comment adequate for describing or

specifying the behaviour (perhaps we should add that As and Bs

are “input”)

Do programmers treat such a specification as an interpretation and

just create a program for which it is a model?

No!

10

Intended interpretations versus models

It is a model for the definition merge(As, Bs, Cs) :- fail.

Should it be the minimum model?

merge/3 succeeds with non-lists, eg merge([],a,a), though not

merge(a,[],a)

Similarly, it can succeed with lists which are not sorted

Swapping the first two arguments in all merge/3 atoms in the

clause heads, and/or just one/both of the recursive call(s) results in

different success sets

Which of these 8 different versions is correct according to the

(single) intended interpretation?

Which of merge([2,3], [2,1], [2,1,2,3]) and merge([2,3],

[2,1], [2,2,1,3]) are true?

11

Declarative debugging

Computations are represented as trees (eg, proof trees) and

debuggers search for “buggy nodes”

Eg, if a node is erroneous and all children are correct (an incorrect

clause instance)

Or, if a node is erroneous with no erroneous children but at least

one inadmissible child (a clause instance which results in a

transition from admissible to inadmissible atoms)

Different definitions of inadmissible are possible, eg, the input

arguments are ill-typed

12

Negation and missing answers

You can get away with saying inadmissible atoms are true in simple

cases

But if

1. there are missing answers (not just wrong answers), or

2. there is negation in the program, or

3. you diagnose (and try to fix) more than one bug

diagnosis can be inaccurate

The solutions involve three truth values, explicitly or implicitly

13

Sixteen versions of even and odd

even(N) :- e4(N). % or e1/... odd(N) :- o2(N). % or ...

e1(0). o1(s(0)).

e1(s(s(N))) :- e1(N). o1(s(s(N))) :- o1(N).

e2(0). o2(s(N)) :- even(N).

e2(s(N)) :- odd(N).

e3(0). o3(s(N)) :- not o3(N).

e3(s(N)) :- not e3(N).

e4(N) :- not odd(N). o4(N) :- not even(N).

14

Programs have more than one meaning

An alternative description/intention for merge:

% merge(As, Bs, Cs): Cs is an interleaving of the lists

% of integers As and Bs and the number of runs in Cs is

% the maximum number of runs in As and Bs

An alternative set of possible modes:

% Either As and Bs or Cs should be input

Admissible if As and Bs or Cs are lists of integers

15

Three-valued semantics

The semantics attempts to reflect the programmer’s intentions

(which are imprecise)

Restricts programs as little as possible: for any given intention

there are more “correct” programs

We use three truth values: true, false and inadmissible

True atoms are intended to succeed, false atoms are intended to

finitely fail

The user doesn’t care about the behaviour of inadmissible atoms

16

Procedural semantics

Basically the same as SLDNF resolution (negated calls ground

when selected)

A single “disjunctive clause” is used for each predicate definition

(syntactic sugar, like Clark’s completion):

merge(X, Y, Z)← ∃A∃As∃B∃Bs∃Cs∃Bs∃Cs

(X = [] ∧ Y = Bs ∧ Z = Bs

∨ X = A.As ∧ Y = [] ∧ Z = A.As

∨ X = A.As ∧ Y = B.Bs ∧ Z = A.Cs∧

A ≤ B ∧merge(As, B.Bs, Cs)

∨ X = A.As ∧ Y = B.Bs ∧ Z = B.Cs∧

A > B ∧merge(A.As, Bs, Cs)

)

17

Procedural semantics (cont.)

A variant of SLDNF trees is defined to better capture the search in

Prolog/Mercury/. . .

A distinction is made between search for some and all solutions

p(X) :- not q(X).

q(a).

q(X) :- q(X).

A goal such as p(a) can have a finite search space (and we can use

induction on the tree height to prove it has certain properties)

18

Fixed point theory

TP was generalised to three-valued interpretations by Fitting as

follows:

T3P (M) is the interpretation such that an atom A is

1. true, if there is a clause instance A← B where B is true in M ,

2. false, if for all clause instances A← B, B is false in M and

3. inadmissible, otherwise.

T3P has all the fixed points of TP

Work of Fitting/Kunen relates this operator to procedural and

model theoretic semantics

19

Fixed point theory (cont.)

We define operators which don’t change the set of atoms we care

about

T3+

P
(M) treats inadmissible atoms as if they succeed:

T3+

P
(M) is the interpretation such that an atom A is

1. inadmissible, if A is inadmissible in M ,

2. true, if A is admissible and there is a clause instance A← B

where B is true or inadmissible in M ,

3. false, otherwise.

We previously related T3+

P
to semantics for programs without

negation

20

Fixed point theory (cont.)

T3−
P

(M) is similar but treats inadmissible atoms as if they fail:

T3−
P

(M) is the interpretation such that an atom A is

1. inadmissible, if A is inadmissible in M ,

2. true, if A is admissible and there is a clause instance A← B

where B is true in M ,

3. false, otherwise.

T3+

P
and T3−

P
have all the fixed points of T3P and TP

21

Model theory

Conjunction, disjunction and negation are defined as in Kleene’s

strong three-valued logic

∧ T F I

T T F I

F F F F

I I F I

∨ T F I

T T T T

F T F I

I T I I

¬T = F, ¬F = T, ¬I = I, ∃ is like ∨

The Fitting/Kunen semantics treats ← in definitions as ↔ (we call

these strong models)

Our intended interpretations are not strong models of merge or 15

of the versions of even and odd

22

Model theory (cont.)

We use a weaker definition of a model based on insights from

declarative debugging:

T← T ok

F← F ok

I← I ok

F← T wrong answers

F← I (?) wrong answers

T← F missing answers

T← I (?) missing answers

I← T ok!

I← F ok!

← T F I

T T F F

F F T F

I T T T

23

Three-valued semantics — Results

Interpretations can be ordered in various ways, including the

information ordering:

M1 ⊆i M2 if T1 ⊆ T2 ∧ F1 ⊆ F2, where T1 (F1) and T2 (F2) are the

true (false) atoms in M1 and M2

Propositions:

M is a model of comp(P) iff M ⊆i T3P (M)

M is a model of comp(P) iff T3+

P
(M) = M and T3−

P
(M) = M

If M is a model of comp(P) all admissible instances of computed

answers are T in M

If M is a model of comp(P) and an all solutions computation of A

terminates normally then every T instance of A in M is subsumed

by some computed answer

24

Three-valued semantics (cont.)

Operational semantics may succeed must loop may fail

⊆i-least strong model T I F

any strong model T T/I/F F

any model T/I T/I/F I/F

Checking M is the ⊆i-least strong model is hard

Checking M is a (strong) model is relatively easy — check each

predicate definition separately

The difference in precision of strong models and models is only the

behaviour of inadmissible atoms (which we don’t care about)

The difference in flexibility is significant: there are natural models

of merge and all versions of even and odd

25

Verification

subset1(L, M) :- not notsubset(L, M).

notsubset(L, M) :- member(X, L), not member(X, M).

member(X, [X|L]).

member(X, [Y|L]) :- member(X, L).

All but first argument of member are intended to be lists

Easy to check that (eg) if the head of the subset1 clause is T (F)

the body is T (F)

26

Verification (cont.)

Drabent and Mi lkowska use two two-valued “specifications”, one

for soundness (atoms for which success is ok) and the other for

completeness (atoms for which success is expected)

That is, the T and I atoms, and just the T atoms, respectively

The verification method uses original and primed versions of each

predicate and priming and double priming operations on formulas

It very effectively obfuscates the truth tables of the three-valued

logic

27

Verification (cont.)

subset2([], L).

subset2([H|T], LH) :-

select(H, LH, L), subset2(T, L), not member(H, T).

select(H, [H|L], L).

select(H, [X|L], [X|LH]) :- select(H, L, LH).

Admissibility: second args of subset2 and select are lists

First arg of subset2 is a duplicate-free list whose elements are a

subset of those in the second arg

We can show (eg) subset2(X,[1,2,3]) doesn’t miss any answers

28

Verification (cont.)

There is another model of subset1 where it is inadmissible if there

are duplicates in the first arg

This model has less information than the model of subset2,

corresponding to the fact that subset1 has less flexible modes

There are other models where both arguments are intended to be

duplicate-free

29

Conclusion

How close are logic programs and specifications?

What is the weakest condition a programmer should enforce which

ensures correct behaviour of their programs?

A1: A two-valued interpretation is a model of the

program/completion

A2: A three-valued interpretation is a strong model

A3: A three-valued interpretation is a model

30

