
Logic Programming: From Underspecification to Undefinedness

Lee Naish, Harald Søndergaard and Benjamin Horsfall

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

{lee,harald,brho}@unimelb.edu.au

Abstract

The semantics of logic programs was originally de-
scribed in terms of two-valued logic. Soon, however, it
was realised that three-valued logic had some natural
advantages, as it provides distinct values not only for
truth and falsehood, but also for “undefined”. The
three-valued semantics proposed by Fitting and by
Kunen are closely related to what is computed by a
logic program, the third truth value being associated
with non-termination. A different three-valued se-
mantics, proposed by Naish, shared much with those
of Fitting and Kunen but incorporated allowances for
programmer intent, the third truth value being asso-
ciated with underspecification. Naish used an (appar-
ently) novel “arrow” operator to relate the intended
meaning of left and right sides of predicate definitions.
In this paper we suggest that the additional truth
values of Fitting/Kunen and Naish are best viewed
as duals. We use Fitting’s later four-valued approach
to unify the two three-valued approaches. The addi-
tional truth value has very little affect on the Fitting
three-valued semantics, though it can be useful when
finding approximations to this semantics for program
analysis. For the Naish semantics, the extra truth
value allows intended interpretations to be more ex-
pressive, allowing us to verify and debug a larger class
of programs. We also explain that the “arrow” opera-
tor of Naish (and our four-valued extension) is essen-
tially the information ordering. This sheds new light
on the relationships between specifications and pro-
grams, and successive executions states of a program.

1 Introduction

Logic programming is an important paradigm. Com-
puters can be seen as machines which manipulate
meaningful symbols and the branch of mathematics
which is most aligned with manipulating meaningful
symbols is logic. This paper is part of a long line of
research on what are good choices of logic to use with
a “pure” subset of the Prolog programming language.
We ignore the “non-logical” aspects of Prolog such as
cut and built-ins which can produce side-effects, and
assume a sound form of negation (ensuring in some
way that negated literals are always ground before
being called).

There are several ways in which having a well-
defined semantics for programs is helpful. First, it
can be helpful for implementing a language (writing
a compiler, for example) — it forms a specification

A version of this paper with a different copyright notice is to
appear at 18th Computing: Australasian Theory Symposium
(CATS 2012), Melbourne, Australia. Conferences in Research
and Practice in Information Technology, Vol. 128. Julian Mestre,
Ed. Reproduction for academic, not-for profit purposes permit-
ted provided this text is included. This work was partially sup-
ported by ARC grant DP 110102579.

for answering “what should this program compute”.
Second, it can be helpful for writing program analy-
sis and transformation tools. Third, it can be helpful
for verification and debugging — it can allow applica-
tion programmers to answer “does this program com-
pute what I intend” and, when the answer is negative,
“why not”. There is typically imprecision involved in
all three cases.

1. Many languages allow some latitude to the imple-
mentor in ways that affect observable behaviour
of the program, for example by not specifying
the order sub-expression evaluation (C is an ex-
ample). Even in pure Prolog, typical approaches
to semantics do not precisely deal with infinite
loops and/or “floundering” (when a negative lit-
eral never becomes ground). Such imprecision is
not necessarily a good thing, but there is often a
trade-off between precision and simplicity of the
semantics.

2. Program analysis tools must provide imprecise
information in general if they are guaranteed to
terminate, since the properties they seek to es-
tablish are almost always undecidable.

3. Programmers are often only interested in how
their code behaves for some class of inputs. For
other inputs they either do not know or do not
care (this is in addition to the first point). More-
over, it is often convenient for programmers to
reason about partial correctness, setting aside
the issue of termination.

A primary aim of this paper is to reconcile two differ-
ent uses of many-valued logic for understanding logic
programs. The first use is for the provision of seman-
tic definition, with the purpose of answering “what
should this program compute?” The other use is in
connection with program specification and debugging,
concerned with answering “does this program com-
pute what I intend” and similar questions involving
programmer intent. Our main contributions are:

• We show how Belnap’s four-valued logic enables
a clean distinction between a formula/query
which is undefined, or non-denoting, and one
which is irrelevant, or inadmissible.

• We use this logic to provide a denotational se-
mantics for logic programs which is designed to
help a programmer reason about partial correct-
ness in a natural way. This aim is different to
the semanticist’s traditional objective of reflect-
ing runtime behaviour, or aligning denotational
and operational semantics.

• We show how four-valued logic helps modelling
the concept of modes in a moded logic program-
ming language such as Mercury.



• We argue that the semantics fits well with estab-
lished practice in program debugging and verifi-
cation.

We assume the reader has a basic understanding of
pure logic programs, including programs in which
clause bodies use negation, and their semantics. We
also assume the reader has some familiarity with the
concepts of types and modes as they are used in logic
programming.

The paper is structured as follows. We set the
scene in Section 2 by revisiting the problems that sur-
round approaches to logical semantics for pure Pro-
log. In Section 3 we introduce the three- and four-
valued logics and many-valued interpretations that
the rest of the paper builds upon. In Section 4 we
provide some background on different approaches to
the semantics of pure Prolog, focusing on work by
Fitting and Kunen. In Section 5 we review Naish’s
approach to what we call specification semantics. In
Section 6 we present a new four-valued approach
which combines two three-valued approaches (Fit-
ting and Naish). Section 7 establishes a “model in-
tersection” principle. Section 8 shows how a four-
valued approach helps modelling the concept of modes
in a moded logic language such as Mercury. Sec-
tion 9 sketches the application to declarative debug-
ging. Section 10 recapitulates, offering a high-level
justification for the four-valued approach, and Sec-
tion 11 concludes.

2 Logic programs

Suppose we need Prolog predicates to capture the
workings of classical propositional conjunction and
negation. We may specify the behaviour exhaustively
(we use neg for negation; not is used as a general
negation primitive in Prolog):

or(t, t, t). neg(t, f).
or(t, f, t). neg(f, t).
or(f, t, t).
or(f, f, f).

yielding simple, correct predicates. If we also need a
predicate for implication, we could define

implies(X, Y) :- neg(X, U), or(U, Y, t).

Variables in the head of a clause are universally quan-
tified over the whole clause; those which only occur in
the body are existentially quantified within the body.

Although Prolog programs explicitly define only
what is true, it is also important that they implic-
itly define what is false. This is the case for most
programs and is essential when negation is used. For
example, neg(t,t) would be considered false and for
it to succeed would be an error. Because (implicit)
falsehood depends on the set of all clauses defining a
predicate, it is often convenient to group all clauses
into a single definition with distinct variables in the
arguments of the clause head. This can be done in
Prolog by using the equality (=) and disjunction (;)
primitives. For example, neg could be defined

neg(X, Y) :- (X=t, Y=f ; X=f, Y=t).

Clark (1978) defined the completion of a logic pro-
gram which explicitly groups clauses together in this
way; others (Fitting (1991), Naish (2006)) assume the
program contains a single clause per predicate from
the outset. Henceforth we assume the same. The :-
in single-clause definitions thus tells us about both the
truth and falsehood of instances of the head. Exactly
how :- is best viewed has been the topic of much de-
bate and is a central focus of this paper. One issue is

p(a).
p(b) :- p(b).
p(c) :- not p(c).
p(d) :- not p(a).

Figure 1: Small program to exemplify semantics

the relationship between the truth values of the head
and body — what set of truth values do we use, what
constitutes a model or a fixed point, etc. Another is
whether we consider one particular model/fixed point
(such as the least one according to some ordering) as
the semantics or do we consider any one of them to
be a possible semantics or consider the set of all mod-
els/fixed points as the semantics.

Let us fix our vocabulary for logic programs and
lay down an abstract syntactic form.

Definition 1 (Syntax) An atom (or atomic for-
mula) is of the form p(t1, . . . , tn), where p is a pred-
icate symbol (of arity n) and t1, . . . , tn are terms. If
A = p(t1, . . . , tn) then A’s predicate symbol pred(A)
is p. There is a distinguished equality predicate =
with arity 2, written using infix notation. A literal is
an atom A or the negation of an atom, written ¬A. A
conjunction C is a conjunction of literals. A disjunc-
tion D is of the form C1 ∨ · · · ∨Ck , k > 0, where each
Ci is a conjunction. A predicate definition is a pair
(H , ∃W [D ]) where H is an atom in most general form
p(V1, . . . ,Vn) (that is, the Vi are distinct variables),
D is a disjunction, and W = vars(D) \ vars(H ). We
call H the head of the definition and ∃W [D ] its body.
The variables in H are the head variables and those
in W are local variables. Finally, a program is a finite
set P of predicate definitions such that if (H1,B1) ∈ S
and (H2,B2) ∈ S then pred(H1) 6= pred(H2).

We let G denote the set of ground atoms (for some
suitably large fixed alphabet).

Definition 2 (Head instance) A head instance of
a predicate definition (H , ∃W [D ]) is an instance
where all head variables have been replaced by ground
terms and local variables remain unchanged.

3 Interpretations and models

In two-valued logic, an interpretation is a mapping
from G to 2 = {f , t}. To give meaning to recursively
defined predicates, the usual approach is to impose
some structure on G → 2, to ensure that we are deal-
ing with a lattice, or a semi-lattice at least. Given
the traditional “closed-world” assumption (that a for-
mula is false unless it can be proven true), the natural
ordering on 2 is this: b1 ≤ b2 iff b1 = f ∨ b2 = t. The
ordering on interpretations is the natural extension of
≤, equipped with which G → 2 is a complete lattice.

Three-valued logic is arguably a more natural logic
for the partial predicates that emerge from pure Pro-
log programs, and more generally, for the partial func-
tions that emerge from programming in any Turing
complete language. The case for three-valued logic as
the appropriate logic for computation has been made
repeatedly, starting with Kleene (1938) and pursued
by the VDM school (see for example Barringer, Cheng
& Jones (1984)), and others. The third value, u, for
“undefined”, finds natural uses, for example as the
value of p(b), given the program in Figure 1.

With three- or four-valued logic, an interpreta-
tion becomes a mapping from G to 3 = {u, f , t} or
to 4 = {u, f , t, i} (we discuss the role of the fourth
value i shortly.) For compatibility with the way
equality is treated in Prolog, we constrain interpre-
tations so x = y is mapped to t if x and y are



f

t

(a) Classical order 2

u

f t

(b) Kleene’s order 3

i

f t

(c) Naish’s order

u

f t

i

information
ordering ⊑

truth ordering ≤

(d) interlaced bilattice 4

Figure 2: Partially ordered sets of truth values

identical (ground) terms, and f, otherwise. This is
irrespective of the set of truth values used. There
are different choices for the semantics of the connec-
tives. Based on the natural “information content”
orderings shown in Figure 2(b) and (d), the natural
choices are the strongest monotone extensions of the
two-valued connectives. This gives rise to Kleene’s
(strong) three-valued logic K3 (Kleene 1938) and Bel-
nap’s four-valued logic (Belnap 1977). We denote the
ordering depicted in Figure 2(b) by ⊑, that is, b1 ⊑ b2
iff b1 = u ∨ b1 = b2, and we overload this symbol
to also denote the ordering in Figure 2(d) (that is,
b1 ⊑ b2 iff b1 = u ∨ b1 = b2 ∨ b2 = i), as well of
the natural extensions to G → 3 or G → 4. We shall
also use ⊒, the inverse of ⊑. In some contexts we dis-
ambiguate the symbol by using a superscript: ⊒3 or
⊒4. Similarly, we use ≥2 for the truth ordering with
two values, and =2, =3 and =4 for equality of truth
values in the different domains.

The structure in Figure 2(d) is the simplest of
Ginsberg’s bilattices (Ginsberg 1988). The diamond
shape can be considered a lattice from two distinct an-
gles. The ordering ≤ is the “truth” ordering, whereas
⊑ is the “information” ordering. For the truth or-
dering we denote the meet and join operations by ∧
and ∨, respectively. For the information ordering we
denote the meet and join operations by ⊓ and ⊔, re-
spectively. The bilattice in Figure 2(d) is interlaced:
Each meet and each join operation is monotone with
respect to either ordering. The bilattice is also dis-
tributive in the strong sense that each meet and each
join operation distributes over all the others.

An equivalent view of three- or four-valued inter-
pretations is to consider an interpretation to be a pair
of ground atom sets. That is, the set of interpreta-
tions I = P(G)×P(G). In this view an interpretation
I = (TI ,FI ) is a set TI of ground atoms deemed true
together with a set FI of ground atoms deemed false.
A ground atom A that appears in neither is deemed
undefined. Such a truth value gap may arise from
the absence of any evidence that A should be true,
or that A should be false. In a four-valued setting,
para-consistency is a possibility: A ground atom A
may belong to TI ∩ FI . Such a truth value glut may
arise from the presence of conflicting evidence regard-
ing A’s truth value.

The concept of a model is central to many ap-
proaches to logic programming. A model is an inter-
pretation which satisfies a particular relationship be-
tween the truth values of the head and body of each
head instance. We now define how truth for atoms is
lifted to truth for bodies of definitions.

Definition 3 (Made true) Let I = (TI ,FI ) be an
interpretation. Recall that ground equality atoms are
in TI or FI , depending on whether their arguments
are the same term.

For a ground atom A,

I makes A true iff A ∈ TI

I makes A false iff A ∈ FI

For a ground negated atom ¬A,

I makes ¬A true iff A ∈ FI

I makes ¬A false iff A ∈ TI

For a ground conjunction C = L1 ∧ · · · ∧ Ln ,

I makes C true iff ∀i ∈ {1 · ·n} I makes Li true

I makes C false iff ∃i ∈ {1 · ·n} I makes Li false

For a ground disjunction D = C1 ∨ · · · ∨ Cn ,

I makes D true iff ∃i ∈ {1 · ·n} I makes Ci true

I makes D false iff ∀i ∈ {1 · ·n} I makes Ci false

For the existential closure of a disjunction ∃W [D ],

I makes ∃W [D ] true iff

I makes some ground instance of D true

I makes ∃W [D ] false iff

I makes all ground instances of D false

We use this to extend interpretations naturally, so
they map G and existential closures of disjunctions
to 2, 3 or 4. We freely switch between viewing an
interpretation as a mapping and as a pair of sets.
Thus, for any formula F ,

I (F ) =















u if I neither makes F true nor false

f if I makes F false and not true

t if I makes F true and not false

i if I makes F true and also false

Definition 4 (RD-Model) Let D be 2, 3 or 4 and
RD be a binary relation on D. An interpretation I is
a RD-model of predicate definition (H ,B) iff for each
head instance (H θ,Bθ), we have RD(I (H θ), I (Bθ)).
I is a RD-model of program P if it is a RD-model of
every predicate definition in P .

For example, a =2-model is a two-valued interpreta-
tion where the head and body of each head instance
have the same truth value.

Another important concept used in logic program-
ming semantics and analysis is the “immediate con-
sequence operator”. The original version, TP , took
a set of true atoms (representing a two-valued inter-
pretation) and returned the set of atoms which could
be proved from those atoms by using a clause for a
single deduction step. Various definitions which gen-
eralise this to 3 and 4 have been given (see Apt &
Bol (1994)). Here we give a definition based on how
we define interpretations. We write ΦP for the imme-
diate consequence operator, following Fitting (1985).



Definition 5 (ΦP) Given an interpretation I and
program P , ΦP (I ) is the interpretation I ′ such that
the truth value of an atom H in I ′ is the truth value of
B in I , where (H ,B) is a head instance of a definition
in P .

Proposition 1 An interpretation I is a fixed point
of ΦP iff I is a =d -model of P , for d in {2,3,4}.

Proof Straightforward from the definitions. �

4 Logic program operational semantics

We first discuss some basic notions and how Clark’s
two-valued approach to logic program semantics fits
with what we have presented so far. Then we dis-
cuss the Fitting/Kunen three-valued approach and
Fitting’s four-valued approach.

4.1 Two-valued semantics

There are three aspects to the semantics of logic pro-
grams: proof theory, model theory and fixed point
theory (see Lloyd (1984), for example). The proof
theory is generally based on resolution, often some
variant of SLDNF resolution (Clark 1978). This gives
a top-down operational semantics, which we don’t
consider in detail here. The model theory gives a
declarative view of programs and is particularly use-
ful for high level reasoning about partial correct-
ness. The fixed point semantics, based on ΦP or TP ,
gives an alternative “bottom up” operational seman-
tics (which has been used in deductive databases) and
which is also particularly useful for program analysis.

The simplest semantics for pure Prolog disallows
negation and treats a Prolog program as a set of def-
inite clauses. Prolog’s :- is treated as classical im-
plication, ←, that is, ≥2-models are used. There is
an important soundness result: if the programmer
has an intended interpretation which is a model, any
ground atom which succeeds is true in that model.
The (≤) least model is also the least =2-model and
the least fixed point of ΦP , which is monotone in the
truth ordering (so a least fixed point always exists).
The atoms which are true in this least model are pre-
cisely those which have successful derivations using
SLD resolution. For these reasons, this is the accepted
semantics for Prolog programs without negation.

To support negation in the semantics, Clark (1978)
combined all clauses defining a particular predicate
into a single “if and only if” definition which uses the
classical bi-implication ↔. This is called the Clark
completion comp(P) of a program P . Our definitions
are essentially the same, but we avoid the ↔ symbol.
In this paper’s terminology, Clark used =2-models,
which correspond to classical fixed points of ΦP . The
soundness result above applies, and any finitely failed
ground atom must also be false in the programmer’s
intended interpretation, if it is a model. However,
because ΦP is non-monotone in the truth ordering
when negation is present, there may be multiple min-
imal fixed points/models, or there may be none. For
example, using Clark’s semantics for the program in
Figure 1, there is no model and no fixed point due to
the clause for p(c), yet the query p(a) succeeds and
p(d) finitely fails. Thus the Clark semantics does not
align particularly well with the operational semantics.

4.2 Three-valued semantics

Even in the absence of negation, a two-valued seman-
tics is lacking in its inability to distinguish failure and
looping. Mycroft (1984) explored the use of many-
valued logics, including 3, to remedy this. Mycroft

discussed this for Horn clause programs, and others,
including Fitting (1985) and Kunen (1987), subse-
quently adapted Clark’s work to a three-valued logic,
addressing the problem of how to account properly
for the use of explicit negation in programs.

In a two-valued setting the Clark completion may
be inconsistent, witness the completion of the clause
for p(c) in Figure 1. A =3-model always exists for
a Clark-completed program; for example, p(c) takes
on the third truth value. Moreover, since ΦP is mono-
tone with respect to the information ordering, a least
fixed point always exists and coincides with the least
=3-model. Ground atoms which are t in this model
(such as p(a) in Figure 1) are those which have suc-
cessful derivations, while ground atoms which are f
(such as p(d)) are those which have finitely failed
SLDNF trees. Atoms with the third truth value (p(b)
and p(c)) must loop. If we were to delete the clause
for p(c) in Figure 1, the Clark semantics would map
p(b) to f, even though it does not finitely fail. Atoms
which are t or f in the Fitting/Kunen semantics may
also loop if the search strategy or computation rule
are unfair (even without negation, t atoms may loop
with an unfair search strategy). However the Fit-
ting/Kunen approach does align the model theoretic
and fixed point semantics much more closely to the
operational semantics than the approach of Clark.

ΦP has a drawback, though: while monotone, it is
not in general continuous. Blair (1982) shows that the

smallest ordinal β for which Φβ
P

(⊥) is the least fixed
point of ΦP may not be recursive and Kunen (1987)
shows that, with a semantics based on three-valued
Herbrand models (all models or the least model), the
set of ground atoms true in such models may not be
recursively enumerable. Kunen instead suggests a se-
mantics based on any three-valued model and shows
that truth (t) in all =3-models is equivalent to be-
ing deemed true by Φn

P
(⊥) for some n ∈ N. Hence

Kunen proposes Φω
P

(⊥) as the meaning of program
P . For a given P and ground atom A, it is decidable
whether A is t in Φn

P
(⊥), so whether A is t in Φω

P
(⊥)

is semi-decidable.
For simplicity, in this paper we take (the possibly

non-computable) M = lfp(ΦP ) to be the meaning of a
program. However, since we shall be concerned with
over-approximations to M , what we shall have to say
will apply equally well if Kunen’s Φω

P
(⊥) is assumed.

4.3 Four-valued semantics

Subsequent to his three-valued proposal, Fitting
recommended, in a series of papers including Fit-
ting (1991, 2002), bilattices as suitable bases for logic
program semantics. The bilattice 4 (Figure 2(d)) was
just one of several studied for the purpose, and ar-
guably the most important one.

Fitting’s motivation for employing four-valued
logic was, apart from the elegance of the interlaced
bilattices and their algebraic properties, the appli-
cation in a logic programming language which sup-
ports a notion of (spatially) distributed programs. In
this context there is a natural need for a fourth truth
value, ⊤ (our i), to denote conflicting information re-
ceived from different nodes in a distributed computing
network.

In this language, the traditional logical connectives
used on the right-hand sides of predicate definitions
are explained in terms of the truth ordering. Negation
is reflection in the truth ordering: ¬u = u, ¬f = t,
¬t = f and ¬i = i, conjunction is meet (∧), disjunc-
tion is join (∨), and existential quantification is the
least upper bound (

∨

) of all instances. The following
tables give conjunction and disjunction in 4.



∧ u t f i

u u u f f

t u t f i

f f f f f

i f i f i

∨ u t f i

u u t u t

t t t t t

f u t f i

i t t i i

The operations ⊓ and ⊔ are similarly given by Fig-
ure 2(d). Fitting refers to ⊓ (he writes ⊗) as con-
sensus, since x ⊓ y represents what x and y agree
about. The ⊔ operation (which he writes as ⊕) he
refers to gullibility, since x ⊔ y represents agreement
with both x and y , whatever they say, including cases
where they disagree.

The idea of a information (or knowledge) ordering
is familiar to anybody who has used domain theory
and denotational semantics. To give meaning to re-
cursively defined objects we refer to fixed points of
functions defined on structures equipped with some
ordering — the information ordering. This happens in
Fitting’s three-valued semantics: That uses the same
distinction between a truth ordering ≤ and an infor-
mation ordering ⊑ but it does not expose it as rad-
ically as the bilattice. In Fitting’s words, the three-
valued approach, “while abstracting away some of the
details of [Kripke’s theory of truth] still hides the dou-
ble ordering structure” (Fitting 2006).

The logic programming language of Fitting (1991)
contains operators ⊗ and ⊕, reflecting the motiva-
tion in terms of distributed programs. We, on the
other hand, deal with a language with traditional
pure Prolog syntax. If the task was simply to model
its operational semantics, having four truth values
rather than three would offer little, if any, advantage.
However, our motivation for using four-valued logic
is very different to that of Fitting. We find com-
pelling reasons for the use of four-valued logic to ex-
plain certain programming language features, as well
as to embrace, semantically, such software engineering
aspects as program correctness with respect to pro-
grammer intent or specification, declarative debug-
ging, and program analysis. We next discuss one of
these aspects.

5 Three-valued specification semantics

Naish (2006) proposed an alternative three-valued se-
mantics. Unlike other approaches, the objective was
not to align declarative and operational semantics.
Instead, the aim was to provide a declarative seman-
tics which can help programmers develop correct code
in a natural way. Naish argued that intentions of pro-
grammers are not two-valued. It is generally intended
that some ground atoms should succeed (be consid-
ered t) and some should finitely fail (be considered
f) but some should never occur in practice; there is
no particular intention for how they should behave
and the programmer does not care and often does
not know how they behave. An example is merging
lists, where it is assumed two sorted lists are given
as input: it may be more appropriate to consider the
value of merge([3,2],[1],[1,3,2]) irrelevant than
to give it a classical truth value, since a precondition
is violated. Or consider this program:

or2(t, _, t). or3(_, t, t).
or2(f, B, B). or3(B, f, B).

It gives two alternative definitions of or (defined in
Section 2), both designed with the assumption that
the first two arguments will always be Booleans. If
they are not, we consider the atom is inadmissible (a
term used in debugging (Pereira 1986, Naish 2000))
and give it the truth value i. Interpretations can

be thought of as the programmer’s understanding
of a specification, where i is used for underspecifi-
cation of behaviour. The same three-valued inter-
pretation can be used with all three definitions of
or, so a programmer can first fix the interpretation
then code any of these definitions and reason about
their correctness. In contrast, both the Clark and
Fitting/Kunen semantics assign different meanings to
the three definitions, with atoms such as or3(4,f,4)
and or2(t,[],t) considered t and or3(t,[],t) con-
sidered f. In order for the programmer’s intended
interpretation to be a =2-model or =3-model, unnat-
ural distinctions such as these must be made. Naish
(2006) argues that it is unrealistic for programmers
to use such interpretations as a basis for reasoning
about correctness of their programs.

Although Naish uses i instead of u as the third
truth value, his approach is structurally the same as
Fitting/Kunen’s with respect to the ΦP operator and
the meaning of connectives used in the body of defi-
nitions. The key difference is how Prolog’s :- is in-
terpreted. Fitting generalises Clark’s classical ↔ to
∼= or “strong equivalence”, where heads and bodies
of head instances must have the same truth values.
Naish defined a different “arrow”, ←, which is asym-
metric. In addition to identical truth values for heads
and bodies, Naish allows head instances of the form
(i, f) and (i, t). The difference is captured by these
tables (Fitting left, Naish right):

∼= t f u

t t f f

f f t f

u f f t

← t f i

t t f f

f f t f

i t t t

Naish’s reasoning is that if a predicate is called in an
inadmissible way, it does not matter if it succeeds or
fails. The definition of a model uses this weaker “ar-
row”; we discuss it further in Section 6. Naish (2006)
shows that for any model, only t and i atoms can
succeed and only f and i atoms can finitely fail. In
models of the code in Figure 1, p(b) can be t or f or i
but p(c) can only be i. For practical code, program-
mers can reason about partial correctness using intu-
itive models in which the behaviour of some atoms is
unspecified.

6 Four-valued specification semantics

The Fitting/Kunen and Naish approaches all use
three truth values, the Kleene strong three-valued
logic for the connectives in the body of definitions,
and the same immediate consequence operator. It
is thus tempting to assume that the “third” truth
value in these approaches is the same in some sense.
This is implicitly assumed by Naish, when different
approaches are compared (Table 1 of Naish (2006)).
However, the third truth value is used for very differ-
ent purposes in these approaches. Fitting uses it to
make the semantics more precise than Clark — dis-
tinguishing success and finite failure from nontermi-
nation (neither success nor finite failure). Naish uses
it to make the semantics less precise than Clark, al-
lowing a truth value corresponding to success or finite
failure. Thus we believe it is best to treat the third
truth values of Fitting and Naish as duals instead of
the same value. Because conjunction, disjunction and
negation in 4 are symmetric in the information order,
the third value in the Kleene strong three-valued logic
can map to either the top or bottom element in 4.
This is why the third truth values in Fitting/Kunen



and Naish are treated in the same way, even though
they are better viewed as semantically distinct.

The four values t, f, i and u are associated with
truth/success, falsehood/finite failure, inadmissibility
(the Naish third value) and looping/error (the Fit-
ting/Kunen third value). Inadmissibility can be seen
as saying both success and failure are correct, so we
can see it as the union of both. Atoms which are u in
the Fitting semantics neither succeed nor fail. Thus
the information ordering can also be seen as the set
ordering, ⊆, if we interpret the truth values as sets
of Boolean values. In Naish, i is implicitly considered
the bottom element so the ordering used in that work
is the inverse of the ordering considered here.

We now show how Naish’s semantics can be gen-
eralised to 4. As discussed above, adding the truth
value i to the Fitting semantics does not allow us to
describe what is computed any more precisely, though
it can be useful for approximating what is computed.
However, adding the truth value u to the Naish se-
mantics does allow us to describe more precisely what
is intended. There are occasions when both the suc-
cess and finite failure of an atom are considered in-
correct behaviour and thus u is an appropriate value
to use in the intended interpretation. We give three
examples. The first is an interpreter for a Turing-
complete language. If the interpreter is given (the
representation of) a looping program it should not
succeed and it should not fail. The second is an oper-
ating system. Ignoring the details of how interaction
with the real world is modelled in the language, ter-
mination means the operating system crashes. The
third is code which is only intended to be called in
limited ways, but is expected to be robust and check
its inputs are well formed. Exceptions or abnormal
termination with an error message are best not con-
sidered success or finite failure. Treating them in the
same way as infinite loops in the semantics may not
be ideal but it is more expressive than using the other
three truth values (indeed, “infinite” loops are never
really infinite because resources are finite and hence
some form of abnormal termination results).

Naish (2006) defines models in terms of the ← de-
scribed earlier, and his Proposition 7 relates models
to the information ordering on interpretations. This
is actually a key observation (though the significance
is not noted by Naish (2006)): the← defines the infor-
mation order on truth values! The classical arrow de-
fines the truth ordering on two values; Naish’s arrow
defines the orthogonal ordering in the three-valued
extension. It is therefore clear how Naish’s arrow can
be generalised to 4. The models of Naish (2006) are
⊒3-models, which can be generalised to ⊒4-models.

Proposition 2 M is a ⊒4-model of P iff ΦP (M ) ⊑
M .

Proof M is a ⊒4-model iff, for every head instance
(H ,B) of P , M (B) ⊑ M (H ). This is equivalent to
stating that if M makes B true then M makes H true,
and also, if M makes B false then M makes H false.
But this is the case iff ΦP (M ) ⊑ M , by the definition
of ΦP . �

It is easy to see that if M is a ⊒3-model of P then
M is a ⊒4-model of P . However, the converse is not
necessarily true, so the results of Naish (2006) can-
not be used to show properties of four-valued models.
However, such properties can be proved directly, us-
ing properties of the lattice of interpretations.

Proposition 3 If M is a ⊒4-model of P then
lfp(ΦP ) ⊑ M .

u

t

f

u
i

t

f

Figure 3: Least vs typical intended ⊒4-model

Proof The proof is by transfinite induction. Given
program P , define

I β =

{

ΦP (I β
′

) if β is a successor ordinal β′ + 1
⊔

α<β I
α if β is a limit ordinal

Assume I α ⊑ M for all ordinals α < β. We show that
I β ⊑ M .

First consider the case β = β′+1. By the induction
hypothesis, I β

′

⊑ M . Since ΦP is monotone, I β =
ΦP (I β

′

) ⊑ ΦP (M ). By Proposition 2, ΦP (M ) ⊑ M .
Hence I β ⊑ M .

Now consider the case of limit ordinal β =
⊔

α<β α.

By definition, I β =
⊔

α<β I
α. By the induction

hypothesis, I α ⊑ M , for each α < β. But then
by properties of the least upper bound operation,
I β =

⊔

α<β I
α ⊑ M . �

Proposition 4 The least ⊒4-model of P is lfp(ΦP ).

Proof This follows from Proposition 3 and the fact
that fixed points are =4-models. �

For reasoning about partial correctness, the relation-
ship between truth values in an interpretation and
operational behaviour is crucial.

Theorem 1 If M is a ⊒4-model of P then no t atoms
in M can finitely fail, no f atoms in M can succeed
and no u atoms in M can finitely fail or succeed.

Proof Finitely failed atoms are f in lfp(ΦP ), success-
ful atoms are t in lfp(ΦP ), and u atoms in lfp(ΦP )
must loop, from Kunen. From Proposition 3 and the
⊑ ordering, f atoms in M can only be f or u in
lfp(ΦP ), t atoms in M can only be t or u in lfp(ΦP ),
and u atoms in M can only be u in lfp(ΦP ). �

These results about the behaviour of t and f atoms
are essentially the two soundness theorems, for finite
failure and success, respectively, of Naish (2006). The
result for u atoms is new. The relationship between
the operational semantics and various forms of three-
valued model-theoretic semantics was summarised by
Table 1 of Naish (2006). However, it assumed the Fit-
ting/Kunen third truth value was the same as Naish’s.
We can now refine it using the four values, as follows
(the last row summarises Theorem 1):

operational succeed loop fail

least =4-model t u f

any =4-model t t/u/i/f f

any ⊒4-model t/i t/u/i/f i/f

Figure 3 gives a graphical representation of how the
least model compares with a typical intended model.



=2 =3

=4

⊒3

⊒4

weaker

Figure 4: Relationship between model definitions

In the least model, no atoms are i, and there is a
correspondence between the truth values of atoms,
t, f and u, and their behaviour — success, finite
failure, and looping, respectively. However, the dis-
tinction between these categories can be subtle and
counter-intuitive (hence the wiggly lines). In a typi-
cal intended interpretation there are atoms which are
i (they may have any other truth value in the least
model). This allows the distinction between the cat-
egories to be more intuitive and allows a single inter-
pretation to be a model of many different programs
with different behaviours for the i atoms. The set of u
atoms in a typical intended interpretation is a subset
of the u atoms in the minimal model. Atoms which
are u in the minimal model can have any truth value
in the intended model. The case where the intended
model has no u atoms corresponds to a three-valued
model of Naish (2006).

Figure 4 shows the relationship between the five
different definitions of a model we have considered.
Any interpretation which is a model according to one
definition is also a model according to all definitions
to the right. Weaker definitions of models allow more
flexibility in how we think of our programs, yet still
guarantee partial correctness.

7 A “model intersection” property

With the classical logic approach for definite clause
programs, we have a useful model intersection prop-
erty: if M and N are (the set of true atoms in) mod-
els then M ∩N is (the set of true atoms in) a model.
Proposition 1 of Naish (2006) generalises this result
using the truth ordering for three-valued interpreta-
tions, and Proposition 2 of Naish (2006) gives a sim-
ilar result which mixes the truth and information or-
derings. However, none of these results hold for logic
programs with negation. Here we give a new anal-
ogous result, using the information ordering, which
holds even when negation is present. This will be
utilised in the next section, on modes.

Proposition 5 If M and N are ⊒4-models of pro-
gram P then M ⊓ N is a ⊒4-model of P .

Proof By Proposition 2, ΦP (M ) ⊑ M and ΦP (N ) ⊑
N , since M and N are models. By monotonicity,
ΦP (M ⊓ N ) ⊑ ΦP (M ) ⊑ M , and ΦP (M ⊓ N ) ⊑
ΦP (N ) ⊑ M . It follows that ΦP (M ⊓ N ) ⊑ M ⊓ N ,
so by Proposition 2, M ⊓ N is a model of P . �

This result does not hold for =4-models. For example:

p :- p.
q :- q.
r :- p ; q ; s.
s :- p ; q ; not r.

Let M be the interpretation which maps (p,q,r,s)
to (t,f,t,t), respectively, and N be the interpretation
(f,t,t,t). Both M and N are =4-models. The meet,
M ⊓ N , is (u,u,t,t) but ΦP applied to this interpre-
tation is (u,u,t,u). So M ⊓N is a ⊒4-model but not
a =4-model.

8 Types and modes

We now discuss the motivation for type and mode sys-
tems in logic programming and show how ⊒4-models
could have a role to play in mode systems. The lack
of restrictions on what constitutes an acceptable Pro-
log program means that is it is easy for programmers
to make simple mistakes which are not immediately
detected by the Prolog system. A typical symptom
is the program unexpectedly fails, leading to rather
tedious analysis of the complex execution in order
uncover the mistake. One approach to avoid some
runtime error diagnosis is to impose additional dis-
cipline on the programmer, generally restricting pro-
gramming style somewhat, in order to allow the sys-
tem to statically classify certain programs as incor-
rect. Various systems of “types” and “modes” have
been proposed for this. An added benefit of some sys-
tems is that they help make implementations more
efficient. Here we discuss such systems at a very high
level and argue that four-valued interpretations po-
tentially have a role in this area, particularly in mode
systems such as that of Mercury (Somogyi, Henderson
& Conway 1995).

Type systems typically assign a type (say,
Boolean, integer, list of integers) to each argument of
each predicate. This allows each variable occurrence
in a clause to also be assigned a type. One common
error is that two occurrences of the same variable have
different types. For example, consider a predicate
head which is intended to return the head of a list of
integers but is incorrectly defined as: head([_|Y],Y).
The first occurrence of Y is associated with type list of
integer and the other is associated with type integer.
If head is called with both arguments instantiated to
the expected types, it must fail. But head can succeed
if it is called in different ways. For example, with only
the first argument instantiated it will succeed, albeit
with the wrong type for the second argument (and
this in turn may cause a wrong result or failure of a
computation which calls head).

Type systems can be refined by considering the
“mode” in which predicates are called, or dependen-
cies between the types of different arguments. This
can allow additional classes of errors to be detected.
For example, we can say the first argument of head
is expected to be “input” and the second argument
can be “output”. Alternatively (but with similar ef-
fect), we could say if the first argument is a list of
integers, the second should be an integer. For a
definition such as head([_|Y],X) there is a consis-
tent assignment of types to variables but it does not
satisfy this mode/type-dependency constraint. One
high level constraint of several mode systems is that
if input arguments are well typed then output argu-
ments should be well typed for any successful call. In
fact, we want the whole successful derivation to be
well typed (otherwise we have a very dubious proof).
Typically, well typed inputs in a clause head imply
well typed inputs in the body, which implies well
typed outputs in body, which implies well typed out-
puts in the head. This idea is present in the direc-
tional types concept (Aiken & Lakshman 1994, Boye
& Ma luszynski 1995), the mode system of Mercury
(Somogyi et al. 1995), and the view of modes pro-
posed in Naish (1996). Here we show the relevance
of four-valued interpretations to this idea, ignoring
the details of what constitutes a type (which differs
in the different proposals) and what additional con-
straints are imposed (neither Mercury or directional
types support cyclic dataflow and Mercury has addi-
tional interactions between types, modes and deter-
minism).



% Type t has a single constructor, ’g’

:- type t ---> g.
:- pred p1(t, t). % other preds similar

:- mode p1(in, in) is nondet. % OK
% :- mode p1(out, in) is nondet. % OK
% :- mode p1(in, out) is nondet. % Error
% :- mode p1(out, out) is nondet. % Error
p1(g, _).

:- mode p2(in, out) is nondet. % one/both
:- mode p2(out, in) is nondet. % modes OK
p2(A, A).

:- mode p3(in, out) is nondet. % both modes
:- mode p3(out, in) is nondet. % needed
p3(A, B) :- p3(B, A).

:- mode p4(in, out) is nondet. % OK
% :- mode p4(in, in) is nondet. % Error
p4(A, A) :- p4(A, _).

:- mode p5(in, out) is nondet. % OK
p5(g, _) :- error("...").

Figure 5: Mercury well modedness

We will use Mercury in our examples. Mercury al-
lows types to be defined using type declarations and
declared for predicate arguments using pred declara-
tions. Modes are declared using mode declarations,
which also declare determinism (in our examples we
use nondet, which imposes no constraint and can
be ignored). Figure 5 gives some very simple exam-
ples. It defines a type t, containing a single constant
g, which we use for all arguments of all predicates.
We use g because any well typed argument must be
ground whereas other arguments may be non-ground
in an answer computed by Prolog (Mercury rejects
any programs where this could occur). The pred-
icate definitions do not compute anything sensible,
and two loop in all cases. Additional arguments could
be added to remedy these defects, but our aim is to
concentrate on modes (particularly some of the less
intuitive aspects).

The definition of p1 constrains the first arguments
to be g but does not constrain the second argument.
Thus the first argument can be input or output, but
the second argument must be input. Mercury allows
multiple mode declarations for a single predicate, as
shown in p2; the predicate must be well moded for
each mode. In this case the program is considered
well moded with either or both the mode declarations,
which is typical. However, there are cases, such as p3,
which are well moded with both modes but neither
single mode is sufficient, because the predicate has a
recursive call which typically has a different instan-
tiation pattern from the top-level call. With only a
single mode declaration, the inputs of the clause head
are not passed on to the inputs of the recursive call,
potentially resulting in a dubious proof. Another ex-
ample of such recursive calls is shown in p4. Although
p4 is well moded with respect to mode (in,out), it is
not well moded with the mode (in,in), even though
the latter mode imposes more constraints on the way
in which p4 is used. The last example, p5, illustrates
another feature of the Mercury mode system. Mer-
cury has an error primitive which leads to abnormal
termination. Where it is used, the constraints of the
mode system are not enforced (since no proof is possi-
ble), so it is well moded with mode (in,out), whereas
p1 (which has a similar definition) is not.

Type and mode declarations document some as-
pects of how predicates are intended to be used and
how they are intended to behave. We define a subset
of possible interpretations which are consistent with
these declarations. We assume there is a notion of
well typedness for each argument of each predicate in
program P .

Definition 6 (Mode and mode interpretation)
A mode for predicate p is an assignment of “input”
or “output” to each of p’s argument positions. Each
predicate has a set of modes. A mode interpretation
of P is a four-valued interpretation M such that the
truth value of an atom A in M is

1. i, if there is no mode of the predicate for which
all input arguments are well typed, and

2. f, if there is a mode of the predicate for which all
input arguments are well typed but some (out-
put) argument is not well typed.

Other atoms may take any truth value.

In typical automated mode analysis there is no ad-
ditional information about other user-defined atoms
and it can be assumed they are t. The (builtin) error
atoms should be u for a language like Mercury. In
the mode interpretation corresponding to Figure 5,
p1(g,g) is t and {p1(n,n), p1(n,g), p1(g,n)} are
all i (we use n as a representative ill-typed term; it
also corresponds to non-ground computed answers).
If the mode of p1 was changed to (in,out), p1(g,n)
would be f. Changing the modes of a predicate so
it can be used in more flexible ways corresponds to
changing the truth value of some atoms from i to f.
For p2, with two mode declarations, only p1(n,n) is
i. Mode interpretations which are ⊒4-models give us
the high level properties of well modedness:

Lemma 1 If a mode interpretation M of a program
P is a ⊒4-model and A is a successful atom which, for
some mode of the predicate, has all input arguments
well typed, then A has all arguments well typed.

Proof By Theorem 1, since M is a ⊒4-model and A
succeeds, A must be t or i in M . By the definition of
mode interpretations, since A is not f and all input
arguments are well typed for some mode, all output
arguments must be well typed as well. �

Lemma 2 If a mode interpretation M of a program
P is a ⊒4-model and A, with M (A) = t, succeeds,
then A is well typed and there is a ground clause
instance A :- B1 ; . . . ; Bn such that all atoms in
some Bi are well typed and assigned t.

Proof Since M is a mode interpretation and A is
not i, A has all input arguments well typed for some
mode, so by Lemma 1 all arguments are well typed.
Since A is t and M is a ⊒4-model, the clause body
must be t or u. Because it succeeds it cannot be u,
so it must be t. By the definition of disjunction and
conjunction, all atoms in some Bi must be t. Since
M is a mode interpretation, each of these atoms must
have well typed inputs for some mode (otherwise they
would be i). They all succeed, so by Lemma 1 they
must be well typed. �

Theorem 2 If a mode interpretation M of a pro-
gram P is a ⊒4-model and A is a t atom which suc-
ceeds, then there is a proof in which all atoms are well
typed.

Proof By induction on the depth of the proof and
Lemma 2. �



The mode interpretation corresponding to the code
in Figure 5 is a ⊒4-model of the program. The same
holds when a mode declaration is replaced by any
of those “commented out” variants that are labelled
OK. Conversely, the interpretations corresponding to
ill-moded variants are not ⊒4-models. For example,
predicate p1 with mode (in,out) has a clause in-
stance p(g,n) :- true, of the form f :- t (whereas
p5 is well moded with this mode; its instance is of
the form f :- u). For p3 with (in,out) as the only
mode we have clause instance p3(g,n) :- p3(n,g),
of the form t :- i. For p4 with mode (in,in) we have
the clause instance p4(g,g) :- p4(g,n), of the same
form.

Although mode interpretations do not capture all
the complexities of the Mercury mode system, they
do give us a high level view and some additional in-
sights. For any predicate definition, we know there is
a lattice of mode interpretations, some of which are
typically ⊒4-models. Each one corresponds to a set
of mode declarations. Models higher in the informa-
tion order place more restrictions on how we use a
predicate — more atoms are i and more arguments
must be input. Proposition 5 tells us the meet of two
⊒4-models is a ⊒4-model. This corresponds to tak-
ing the union of the sets of mode declarations (the
set of i atoms in the meet is the intersection of the i
atoms in the two ⊒4-models). One way the Mercury
mode system could potentially be extended is by al-
lowing the programmer to specify several sets of mode
declarations for a predicate (corresponding to several
⊒4-models). A predicate such as p2 could have two
singleton sets of modes declared (with the union im-
plicit due to Proposition 5), whereas p3 would need a
single set of two mode declarations. This potentially
could allow more errors to be detected and perhaps
greater efficiency (avoiding some modes of a predicate
appearing in the object code if they are not required).
An understanding of the lattice of mode interpreta-
tions may also be helpful for mode inference.

9 Declarative debugging

The semantics of Naish (2006) is closely aligned with
declarative debugging (Shapiro 1983) and the term
“inadmissible” comes from this area (Pereira 1986).
In particular, it gives a formal basis for the three-
valued approach to declarative debugging of Naish
(2000), as applied to Prolog. This debugging scheme
represents the computation as a tree; sub-trees rep-
resent sub-computations. Each node is classified as
correct, erroneous or inadmissible. The debugger
searches the tree for a buggy node, which is an er-
roneous node with no erroneous children. If all chil-
dren are correct it is called an e-bug, otherwise (it has
an inadmissible child) it is called an i-bug. Every fi-
nite tree with an erroneous root contains at least one
buggy node and finding such a node is the job of a
declarative debugger.

To diagnose wrong answers in Prolog a proof tree
(see Lloyd (1984)) is used to represent the computa-
tion. Nodes containing t, f and i atoms are correct,
erroneous and inadmissible, respectively. To diagnose
computations that miss answers, a different form of
tree is used, and nodes containing finitely failed t, f
and i atoms are erroneous, correct, and inadmissible,
respectively. There are some additional complexities,
such as non-ground wrong answers and computations
which return some but not all correct answers; we skip
the details here. Four-valued interpretations could be
used in place of three-valued interpretations in this
scheme. For wrong answer diagnosis, u should be
treated the same as f and for missing answer diagnosis

u should be treated the same as t. Naish (2000) also
discusses diagnosis of abnormal termination and (sus-
pected) non-termination, but assumes only i atoms
should loop or terminate abnormally. With four-
valued interpretations this restriction can be lifted.

10 Computation and information ordering

The logic programming paradigm introduced the view
of computation as deduction (Kowalski 1980). Clas-
sical logic was used and hence computation was
identified with the truth ordering. Similarly, there
was much early work discussing the relationship be-
tween specifications (written in classical first or-
der logic) and programs (Hogger 1981, Kowalski
1985). This work generally overlooked what we
call inadmissibility. For example, Kowalski (1985)
gives a specification for the subset(SS,S) predicate,
∀E [member(E ,S ) → member(E ,SS )] (sets are rep-
resented as lists and member is the Prolog list mem-
bership predicate), and shows that a common Prolog
implementation of subset is a logical consequence.
However, subset(true,42) is true according to the
specification and if the specification is modified to re-
strict both arguments to be lists, the program is no
longer a logical consequence (it has subset([],_) as
a base case). When negation is considered, or even the
fact that logic programs implicitly define falsehood of
some atoms, it becomes clear that approaches based
on the truth ordering are unworkable.

Four-valued logic enables us to identify computa-
tion with the information ordering rather than the
truth ordering. Specifications can be identified with
intended interpretations, and inadmissibility with un-
derspecification. There can be different logic pro-
grams, with different behaviours, which are correct
according to a specification — they can be seen as
refinements of the specification. The behaviour of a
program is given by its least ⊒4-model, and it is (par-
tially) correct if and only if the least model is less than
or equal to the specification, in the information order-
ing. The specification being a ⊒4-model is a sufficient
condition for correctness.

The same ordering applies to successive states of
a computation using a correct program. Because
H ⊒ B for each head instance, replacing a subgoal
by the body of its definition (a basic step in a logic
programming computation) gives us a new goal which
is lower (or equal) in the information ordering, in the
following sense. Given a top-level Prolog goal, the
intended interpretation gives a truth assignment for
each ground instance. Subsequent resolvents can also
be given a a truth assignment for each ground in-
stance of the variables in the top level goal (with local
variables considered existentially quantified). As the
computation progresses, the truth value assignment
for each instance often remains the same, but can be-
come lower in the information ordering. For example,
consider the goal implies(X,f). Our interpretation
will map implies(f,f) to t and implies(t,f) to
f , but may map implies(42,f) to i, if the first ar-
gument is expected to be input. After one step of
the computation we have the conjunction neg(X,U)
∧ or(U,f,t). If our intended interpretation allows
any mode for neg, the instance where X = 42 is then
mapped to f .

We believe that having a complete lattice using the
information ordering provides an important and fun-
damental insight into the nature of computation. At
the top of the lattice we have an element which corre-
sponds to underspecification in the mind of a person.
At the bottom of the lattice we have an element which
corresponds to a the inability of a machine or formal
system to compute or define a value. The transitions



between the meanings we attach to specifications and
correct programs, and successive execution states of
a correct program, follow the information ordering,
rather than the truth ordering.

11 Conclusion

We have been aware of the limitations of formal sys-
tems since well before the invention of electronic com-
puters. Gödel showed the impossibility of a complete
proof procedure for elementary number theory, hence
important gaps between truth and provability, and
in any Turing-complete programming language there
are programs which fail to terminate — undefined-
ness is unavoidable. Our awareness of the limitations
of humans in their interaction with computing sys-
tems goes back even further. Babbage (1864) claims
to have been asked by members of the Parliament of
the United Kingdom, “Pray, Mr. Babbage, if you put
into the machine wrong figures, will the right answers
come out”? The term “garbage in, garbage out” was
coined in the early days of electronic computing and
concepts such as “preconditions” have always been
important in formal verification of software — under-
specification is also unavoidable in practice.

Using a special value to denote undefinedness is
the accepted practice in programming language se-
mantics. Using a special value to denote underspeci-
fication is less well established, but has been shown to
provide elegant and natural reasoning about partial
correctness, at least in the logic programming con-
text. In this paper we have proposed a domain for
reasoning about Prolog programs which has values
to denote both undefinedness and underspecification
— they are the bottom and top elements of a bilat-
tice. This gives an elegant picture which encompasses
both humans not making sense of some things and
computers being unable to produce definitive results
sometimes. The logical connectives Prolog uses in the
body of clauses operate within the truth order in the
bilattice. However, the overall view of computation
operates in the orthogonal “information” order: from
underspecification to undefinedness.

References

Aiken, A. & Lakshman, T. K. (1994), Directional type
checking of logic programs, in ‘Static Analysis’,
Vol. 864 of Lecture Notes in Computer Science,
Springer, pp. 43–60.

Apt, K. R. & Bol, R. N. (1994), ‘Logic programming
and negation: A survey’, Journal of Logic Pro-
gramming 19/20, 9–71.

Babbage, C. (1864), Passages from the Life of a
Philosopher, Longman and Co., London.

Barringer, H., Cheng, J. H. & Jones, C. B. (1984), ‘A
logic covering undefinedness in program proofs’,
Acta Informatica 21, 251–269.

Belnap, N. D. (1977), A useful four-valued logic, in
J. M. Dunn & G. Epstein, eds, ‘Modern Uses of
Multiple-Valued Logic’, D. Reidel, pp. 8–37.

Blair, H. (1982), ‘The recursion-theoretic complexity
of the semantics of predicate logic as a program-
ming language’, Information and Control 54, 25–
47.

Boye, J. & Ma luszynski, J. (1995), Two aspects of di-
rectional types, in L. Sterling, ed., ‘Proc. Twelfth
International Conf. Logic Programming’, MIT
Press, pp. 747–761.

Clark, K. L. (1978), Negation as failure, in H. Gal-
laire & J. Minker, eds, ‘Logic and Data Bases’,
Plenum Press, pp. 293–322.

Fitting, M. (1985), ‘A Kripke-Kleene semantics for
logic programs’, Journal of Logic Programming
2(4), 295–312.

Fitting, M. (1989), Negation as refutation, in
R. Parikh, ed., ‘Proc. LICS 1989’, IEEE, Cam-
bridge, MA, pp. 63–70.

Fitting, M. (1991), ‘Bilattices and the semantics of
logic programming’, Journal of Logic Program-
ming 11(2), 91–116.

Fitting, M. (2002), ‘Fixpoint semantics for logic pro-
gramming – a survey’, Theoretical Computer
Science 278(1–2), 25–51.

Fitting, M. (2006), Bilattices are nice things, in
T. Bolander, V. Hendricks & S. A. Pedersen, eds,
‘Self-Reference’, CSLI, Stanford, CA, pp. 53–77.

Ginsberg, M. (1988), ‘Multivalued logics: A uniform
approach to reasoning in artificial intelligence’,
Computational Intelligence 4(3), 265–316.

Hogger, C. (1981), ‘Derivation of logic programs’,
JACM 28(2), 372–392.

Kleene, S. C. (1938), ‘On notation for ordinal num-
bers’, The Journal of Symbolic Logic 3, 150–155.

Kowalski, R. A. (1980), Logic for Problem Solving,
North Holland, New York.

Kowalski, R. A. (1985), The relation between logic
programming and logic specification, in C. Hoare
& J. Shepherdson, eds, ‘Mathematical Logic and
Programming Languages’, Prentice-Hall, pp. 11–
27.

Kunen, K. (1987), ‘Negation in logic programming’,
Journal of Logic Programming 4(4), 289–308.

Lloyd, J. W. (1984), Foundations of Logic Program-
ming, Springer.

Mycroft, A. (1984), Logic programs and many-valued
logic, in M. Fontet & K. Mehlhorn, eds, ‘Symp.
Theoretical Aspects of Computer Science’, Vol.
166 of Lecture Notes in Computer Science,
Springer, pp. 274–286.

Naish, L. (1996), A declarative view of modes, in
‘Proc. 1996 Joint Int. Conf. Symp. Logic Pro-
gramming’, MIT Press, pp. 185–199.

Naish, L. (2000), ‘A three-valued declarative de-
bugging scheme’, Australian Computer Science
Communications 22(1), 166–173.

Naish, L. (2006), ‘A three-valued semantics for logic
programmers’, Theory and Practice of Logic
Programming 6(5), 509–538.

Pereira, L. M. (1986), Rational debugging in logic
programming, in E. Shapiro, ed., ‘Proc. Third
Int. Conf. Logic Programming’, Vol. 225 of
Lecture Notes in Computer Science, Springer,
pp. 203–210.

Shapiro, E. Y. (1983), Algorithmic Program Debug-
ging, MIT Press, Cambridge MA.

Somogyi, Z., Henderson, F. J. & Conway, T. (1995),
Mercury: An efficient purely declarative logic
programming language, in ‘Proc. Australian
Computer Science Conf.’, Glenelg, Australia,
pp. 499–512.


