
Logic Programming: From Underspecification to

Undefinedness

Lee Naish, Harald Søndergaard and Benjamin Horsfall

Computing and Information Systems

University of Melbourne

http://www.cs.mu.oz.au/˜lee/papers/sem4lp/

1



Outline

Motivation

What programs compute (in brief)

What we intend programs to compute (in brief)

What logic programs compute

What we intend logic programs compute

A unified view

What computation is all about

2



Motivation

We want to reason about (relationships between)

• What we intend to compute

• Formal specifications

• Programs

• Computations

• What is computed

Logic is a possible unifying paradigm

Note: we concentrate on partial correctness here

3



What programs compute

Classical logic, with two truth values, is not enough to describe

what Prolog programs compute

p(a).

p(b) :- not p(a).

p(c) :- p(c).

p(a) and p(b) succeed and finitely fail, respectively, but p(c) loops

Gödel and Turing tell us we can’t avoid “undefinedness” in formal

systems which are reasonably expressive (eg, Turing-complete

languages)

4



What we intend programs to compute

Two values is not enough to describe our intentions either, because

often we don’t care about the behaviour in all cases

Eg, for merge, we assume the input lists are sorted; we don’t

specify what is computed in other cases because it shouldn’t arise

The idea of “garbage in, garbage out”, preconditions,

inadmissibility, programming by contract, etc is not new:

“Pray, Mr. Babbage, if you put into the machine wrong figures, will

the right answers come out”?

There are multiple correct implementations which compute different

things, so the relationship between what is computed and what is

intended is not 1:1

5



What logic programs compute

When talking about semantics its convenient to have only a single

clause for each predicate, using disjunction and equality, eg

p(X) :- (X=a ; X=b, not p(a) ; X=c, p(c)).

A key question: what does “:-” mean?

Van Emden and Kowalski developed a fixedpoint semantics for

Horn clauses, using the “immediate consequence operator” TP ,

treating :- as classical ←

Clark combined clauses into single definitions to support negation

and treated :- as classical ↔

We use syntax (H, ∃W [D]), where W are the variables only in D

A head instance of (H,B) is an instance where variables in H are

replaced by ground terms and other variables are unchanged

6



What logic programs compute (cont.)

Fitting and Kunen used K3, generalised TP to ΦP and treated :-

as three-valued bi-implication/equivalence (∼=)

u

f t
information
ordering ⊑

truth ordering ≤

∧ u t f

u u u f

t u t f

f f f f

Conjunction is g.l.b. in truth order; similarly disjunction is l.u.b.

and negation is reflection ¬t = f, ¬f = t, ¬u = u (De Morgan’s

laws hold)

Generalises classical logic (2)

7



What logic programs compute (cont.)

ΦP maps interpretations to interpretations (interpretations map

ground atoms to truth values)

If (H,B) is a head instance, the truth value of B in I is the truth

value of H in ΦP (I)

ΦP is monotonic in the information ordering and its least

fixedpoint gives the atoms which succeed/finitely fail/loop in

Prolog (more or less)

8



What we intend logic programs compute

Naish (2006) proposed an approach similar to Fitting/Kunen using

3, but :- is interpreted as the following “←”

∼= t f u

t t f f

f f t f

u f f t

← t f i

t t f f

f f t f

i t t t

Clauses with heads i correspond to calls which are “inadmissible”

or “garbage in” or “pre-conditions” are violated

Hence the body can have any truth value, we don’t care

Although the same truth tables are used for ∨, ∧ and ¬, u and i

serve two quite different purposes

9



Belnap’s 4

There are 4 truth values which can be arranged in a bilattice

u

f t

i

information
ordering ⊑

truth ordering ≤

∧ u t f i

u u u f f

t u t f i

f f f f f

i f i f i

Conjunction is g.l.b. in truth order; similarly disjunction is l.u.b.

and negation is reflection ¬t = f, ¬f = t, ¬i = i, ¬u = u

Kleene’s 3 is embedded in two ways

But how do we generalise the Naish (2006) “←”?

Its the information ordering, rather than the truth ordering!

10



Models

An interpretation I is a RD-model, where D is a truth value

domain (2, 3, or 4) and R is a relation over D, iff for each head

instance (H,B), we have RD(I(H), I(B))

Semantics :- RD

Van Emden/Kowalski ← ≥2

Clark ↔ =2

Fitting/Kunen ∼= =3

Naish (2006) “←” ⊒3

This work ⊒ ⊒4

=2

=3

=4 ⊒3

⊒4

weaker

Our intended interpretation being a ⊒4-model is a sufficient

condition for (partial) correctness

11



What is computed versus what we intend

u

t

f

u
i

t

f

⊤

I

lfp
ΦP

⊥

12



Computation is the information ordering!

What should be the relationship between

• what we intend and what is computed?

• specifications and programs?

• type/mode declarations and definitions?

• heads and bodies of definitions within programs?

• successive execution states in a computation?

The information ordering, ⊒

The connectives in the bodies of definitions use the truth ordering

But computation operates in the information ordering: from

underspecification to undefinedness

13


