Undefinedness and underspecification

Contributors

Based largely on Lee Naish, Harald Sgndergaard and Benjamin

Horsfall, “Logic Programming: From Underspecification to
Undefinedness”, CATS 2012,
http://www.cs.mu.oz.au/"lee /papers/sem4lp/

Also above authors plus Graeme Gange, “Multiple-Valued Fixed
Points and Cyclic Circuits” (submitted), plus ongoing work with

Bernie Pope

Outline

Motivation

What programs compute

What we intend programs to compute
What logic programs compute

What we intend logic programs compute

A unified view of everything:-)

Conclusions

Motivation

We want to reason about (relationships between)

e What we intend to compute
Formal specifications
Programs

e Computations

e What is computed

Logic is a possible unifying paradigm, as is the lambda calculus

Note: we concentrate on partial correctness here

What programs compute

Even for computing Booleans, Godel and Turing tell us that two

values is not enough when we have an expressive language, eg

>-- Haskell —=% Prolog (kind of)
>e n = -

> if n == 0 then True else -- e(0).

> if n == 1 then False else -— e(N) :- N\=0, N\=1,
> e (n-2) - N2 is N-2, e(N2).

This code is able to determine if a natural number is even or not
But when given a negative number, the code loops

In Haskell, e (-1) computes nothing and in Prolog, e(-1) neither
succeeds nor finitely fails (it can’t be proved or disproved)

We can’t avoid “undefinedness” in formal systems which are

reasonably expressive (eg, Turing-complete languages)

Kleene’s strong three-valued logic (3)

As well as true and false there is a third “undefined” truth value;

they can be arranged in a lattice

A

information

ordering C £ \ / t
u

truth ordering S,

Conjunction is g.I.b. in truth order; similarly disjunction is l.u.b.
and negation is reflection -t = f, -f =t, —u = u (De Morgan’s
laws hold)

Generalises classical logic (2)

What we intend programs to compute

In some contexts we only use natural numbers, and e is fine

When we define merge, we assume the input lists are sorted; we

don’t care what is computed otherwise because it shouldn’t arise

There are multiple correct implementations which compute different
things — there is not a 1:1 relationship between what is computed

and what is intended

The idea of “garbage in, garbage out”, preconditions,

inadmissibility, contracts, etc is not new:

“Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out”?

It seems we can’t practically avoid “underspecification” either

What logic programs compute

When talking about semantics its convenient to have only a single

clause for each predicate, using disjunction and equality, eg

e(N) :- (N=0 ;
not N=0, not N=1, N2 is N-2, e(N2)).

What does “:-"mean? Is it classical <—, or <+ or something else?
What is the relationship between LHS and RHS of definitions?

We use abstract syntax (H,3W|D]), where W are the variables in
D but not H

A head instance of (H, B) is an instance where variables in H are

replaced by ground terms and other variables are unchanged

We (later) capture the relationship between heads and bodies by

defining various kinds of models

What logic programs compute (cont.)

Van Emden and Kowalski developed a fixedpoint semantics for
Horn clauses, using the “immediate consequence operator” T'p,
treating :- as classical <

Clark combined clauses into single definitions to support negation
and treated :- as classical <»

Fitting and Kunen used 3, generalised Tp to ®p and treated :- as
three-valued bi-implication/equivalence (22)

® p maps interpretations to interpretations (interpretations map
ground atoms to truth values)

If (H, B) is a head instance, the truth value of B in I is the truth
value of H in ®p(I)

® p is monotonic in the information ordering and its least
fixedpoint gives the atoms which succeed/finitely fail/loop in
Prolog (more or less)

What we intend logic programs compute

Naish (2006) proposed an approach similar to Fitting/Kunen using
3, but :- is interpreted as the following “<-”

t — || t

f || f f || f
u || f 1 ||t t

u f

t || t f t t | f
f t
t

Clauses with heads i correspond to calls which are “inadmissible”
or “garbage in” or “pre-conditions” are violated

Hence the body can have any truth value, we don’t care

Although same truth tables are used for V, A and —, u and i are
really quite different

Belnap’s 4

There are 4 truth values which can be arranged in a bilattice

/ ' \ ANla |t
information ullu|u
: f t
ordering C
\ / t || u|t
u f || f | f

i | f]i

A

truth ordering §,

Conjunction is g.I.b. in truth order; similarly disjunction is l.u.b.

and negation is reflection -t =f, -f=¢t, -i=1i, -u=u
Kleene’s 3 is embedded in two ways
But how do we generalise the Naish (2006) “<"7

Its the information ordering, rather than the truth ordering!

11

Models

An interpretation I is a RP-model, where D is a truth value

domain (2, 3, or 4) and R is a relation over D, iff for each head
instance (H, B), we have RP(I(H), I(B))

Semantics

Van Emden/Kowalski

Clark weaker
Fitting/Kunen
Naish (2006)
This work

Our intended interpretation being a J%-model is a sufficient

condition for (partial) correctness

What is computed versus what we intend

h /T\

[o>

o

Computation is the information ordering!

What should be the relationship between
e what we intend and what is computed?
e specifications and programs?
e heads and bodies of definitions within programs?
e successive execution states in a computation?

The information ordering, _
The connectives in the bodies of definitions use the truth ordering

But computation operates in the information ordering: from

underspecification to undefinedness

Cyclic circuits (submitted to ISMVL12)

Logic circuits correspond to sets of Boolean equations; cyclic

circuits correspond to recursive equations

Allowing cycles can reduce the size of circuits but some cyclic
circuits are not well-behaved (eg, they may oscillate or have

“memory” when its not desired)

Sometimes we don’t care about the behaviour for some sets of
inputs (eg, the seven segment display for decimal digits)

The same four-valued logic can be used to analyse such circuits
(u = ill-behaved, i = don’t care)

Functional programming (also in preparation)

Using a semi-lattice with | = u to define what is computed is well
established

The Naish (2006) approach to what is intended has been adapted

to functional programming: a semi-lattice with T =i

There are some advantages of the FP view, eg when we represent

the same abstract value in more than one way

The two semi-lattices can be put together to form a complete

lattice (work in progress)

Conclusions

Both undefinedness and underspecification are inconvenient to

avoid

We can define a complete lattice with 1 denoting undefined and T

denoting unspecified, and a monotonic operator which corresponds

to a computation step

This is an elegant framework for reasoning about many important

aspects of computation which relate to correctness

