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Abstract

The semantics of logic programs was originally described in terms of two-valued logic.
Soon, however, it was realised that three-valued logic had some natural advantages, as it
provides distinct values not only for truth and falsehood, but also for “undefined”. The
three-valued semantics proposed by Fitting and by Kunen are closely related to what is
computed by a logic program, the third truth value being associated with non-termination.
A different three-valued semantics, proposed by Naish, shared much with those of Fitting
and Kunen but incorporated allowances for programmer intent, the third truth value being
associated with underspecification. Naish used an (apparently) novel “arrow” operator to
relate the intended meaning of left and right sides of predicate definitions. In this paper
we suggest that the additional truth values of Fitting/Kunen and Naish are best viewed as
duals. We use Belnap’s four-valued logic, also used elsewhere by Fitting, to unify the two
three-valued approaches. The truth values are arranged in a bilattice which supports the
classical ordering on truth values as well as the “information ordering”. We note that the
“arrow” operator of Naish (and our four-valued extension) is essentially the information
ordering, whereas the classical arrow denotes the truth ordering. This allows us to shed
new light on many aspects of logic programming, including program analysis, type and
mode systems, declarative debugging and the relationships between specifications and
programs, and successive executions states of a program. This paper is to appear in Theory
and Practice of Logic Programming (TPLP).

KEYWORDS: Declarative debugging, information order, intended interpretation, logic
program specification, many-valued logic, modes, program analysis, specification seman-
tics.

1 Introduction

Logic programming is an important paradigm. Computers can be seen as machines

which manipulate meaningful symbols and the branch of mathematics which is most

aligned with manipulating meaningful symbols is logic. This paper is part of a long

line of research on what are good choices of logic to use with a “pure” subset of

the Prolog programming language. We ignore the “non-logical” aspects of Prolog

such as cut and built-ins which can produce side-effects, and assume a sound form
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of negation (ensuring in some way that negated literals are always ground before

being called).

There are several ways in which having a well-defined semantics for programs is

helpful. First, it can be helpful for implementing a language (writing a compiler, for

example)—it forms a specification for answering “what should this program com-

pute”. Second, it can be helpful for writing program analysis and transformation

tools. Third, it can be helpful for verification and debugging—it can allow appli-

cation programmers to answer “does this program compute what I intend” and,

when the answer is negative, “why not”. There is typically imprecision involved in

all three cases.

1. Many languages allow some latitude to the implementor in ways that affect

observable behaviour of the program, for example by not specifying the order

of sub-expression evaluation (C is an example). Even in pure Prolog, typi-

cal approaches to semantics do not precisely deal with infinite loops and/or

“floundering” (when a negative literal never becomes ground). Such impre-

cision is not necessarily a good thing, but there is often a trade-off between

precision and simplicity of the semantics.

2. Program analysis tools must provide imprecise information in general if they

are guaranteed to terminate, since the properties they seek to establish are

almost always undecidable.

3. Programmers are often only interested in how their code behaves for some

class of inputs. For other inputs they either do not know or do not care

(this is in addition to the first point). Moreover, it is often convenient for

programmers to reason about partial correctness, setting aside the issue of

termination.

A primary aim of this paper is to reconcile two different uses of many-valued logic

for understanding logic programs. The first use is for the provision of semantic

definition, with the purpose of answering “what should this program compute?”

The other use is in connection with program specification and debugging, concerned

with answering “does this program compute what I intend” and similar questions

involving programmer intent.

A second aim is to show the versatility of four-valued logic in a logic programming

context. Four-valued logic has been recommended by Fitting (1991a), but primar-

ily as a programming language feature, for distributed programming. In that con-

text, the fourth truth value represents conflicting information derived from different

nodes in a network. We complement that work by pointing out that motivation for

four-valued logic comes from many other sources, even when we restrict attention

to sequential programming. Central to our use of this logic is its support for the

“information ordering” as well as the classical ordering on truth values. Our con-

tributions are:

• We show how Belnap’s four-valued logic enables a clean distinction between

a formula/query which is undefined, or non-denoting, and one which is irrel-

evant, or inadmissible.
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• We use this logic to provide a denotational semantics for logic programs which

is designed to help a programmer reason about partial correctness in a natural

way. This aim is different to the semanticist’s traditional objective of reflecting

runtime behaviour, or aligning denotational and operational semantics.

• The approximative nature of logic program analysis naturally fits with the

information ordering and we show how semantic approximation can be ex-

pressed in terms of four truth values.

• We show how four-valued logic helps modelling the concept of modes in a

moded logic programming language such as Mercury.

• We argue that a four-valued semantics and the information ordering clarify

the relation between programs and formal specifications.

• We show how established practice in declarative debugging can be extended

with four values.

• Finally, we argue that the computation model of logic programming can be

viewed from the perspective of the information order rather than the classical

truth order.

This paper is an extended version of Naish et al. (2012). We assume the reader

has a basic understanding of pure logic programs, including programs in which

clause bodies use negation, and their semantics. We also assume the reader has

some familiarity with the concepts of types and modes as they are used in logic

programming.

The paper is structured as follows. We set the scene in Section 2 by revisiting

the problems that surround approaches to logical semantics for pure Prolog. In

Section 3 we introduce the three- and four-valued logics and many-valued inter-

pretations that the rest of the paper builds upon. In Section 4 we provide some

background on different approaches to the semantics of pure Prolog, focusing on

work by Fitting and Kunen. In Section 5 we review Naish’s approach to what we

call specification semantics. In Section 6 we present a new four-valued approach

which combines two three-valued approaches (Fitting and Naish). Section 7 estab-

lishes a property of this semantics analogous to model intersection. Section 8 shows

how four-valued logic naturally captures the kind of approximation employed in

program analysis. Section 9 shows how it also helps with modelling the concept of

modes in a moded logic language such as Mercury. Section 10 discusses its rele-

vance for formal specification and Section 11 sketches its application to declarative

debugging. Section 12 shows how the logic programming computation model can

be seen in terms of the information ordering. Section 13 discusses some additional

related work and Section 14 concludes.

2 Logic programs

Suppose we need Prolog predicates to capture the workings of classical propositional

disjunction and negation. We may specify the behaviour exhaustively (we use neg

for negation since not is often used as a general negation primitive in Prolog):
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or(t, t, t). neg(t, f).

or(t, f, t). neg(f, t).

or(f, t, t).

or(f, f, f).

yielding simple, correct predicates. If we also need a predicate for implication, we

could define

implies(X, Y) :- neg(X, U), or(U, Y, t).

Clauses are universally closed. Stated differently, the variables in the head of a

clause are universally quantified over the whole clause; those which only occur in

the body are existentially quantified within the body.

Although Prolog programs explicitly define only what is true, it is also important

that they implicitly define what is false. This is the case for most programs and is

essential when negation is used. For example, neg(t,t) would be considered false

and for it to succeed would be an error. Because (implicit) falsehood depends on

the set of all clauses defining a predicate, it is often convenient to group all clauses

into a single definition with distinct variables in the arguments of the clause head.

This can be done in Prolog by using the equality (=) and disjunction (;) primitives.

For example, neg could be defined

neg(X, Y) :- (X=t, Y=f ; X=f, Y=t).

Clark (1978) defined the completion of a logic program which explicitly groups

clauses together in this way; others (Fitting 1991a; Naish 2006) assume the program

contains a single clause per predicate from the outset. Henceforth we assume the

same. The :- in a single-clause definition thus tells us about both the truth and

falsehood of instances of the head. Exactly how :- is best viewed has been the topic

of much debate and is a central focus of this paper. One issue is the relationship

between the truth values of the head and body—what set of truth values do we

use, what constitutes a model or a fixed point, etc. Another is whether we consider

one particular model/fixed point (such as the least one according to some ordering)

as the semantics or do we consider any one of them to be a possible semantics or

consider the set of all models/fixed points as the semantics.

Let us fix our vocabulary for logic programs and lay down an abstract syntactic

form.

Definition 1 (Syntax )

An atom (or atomic formula) is of the form p(t1, . . . , tn), where p is a predicate

symbol (of arity n) and t1, . . . , tn are terms. If A = p(t1, . . . , tn) then A’s predicate

symbol pred(A) is p. There is a distinguished equality predicate = with arity 2,

written using infix notation. A literal is an atom A or the negation of an atom,

written ¬A. A conjunction C is a conjunction of literals. A disjunction D is of the

form C1 ∨ · · · ∨Ck , k > 0, where each Ci is a conjunction. For a syntactic object o

(literal, clause, disjunction, and so on), we use vars(o) to denote the set of variables

that occur in o.

A predicate definition is a pair (H , ∃W [D ]) where H is an atom in most general



Truth versus Information 5

form p(V1, . . . ,Vn) (that is, the Vi are distinct variables), D is a disjunction, and

W = vars(D) \ vars(H ). We call H the head of the definition and ∃W [D ] its

body. The variables vars(H ) are the head variables and the variables W are local

variables. Finally, a program is a finite set S of predicate definitions such that if

(H1,B1) ∈ S and (H2,B2) ∈ S then pred(H1) 6= pred(H2).

In program text we use Prolog notation and assume this is converted to the

abstract syntax described above by combining clauses and mapping “,”, “;” and

“not” to ∧, ∨ and ¬, respectively, etc. For example, the definition of implies/3

above is shorthand for (implies(X ,Y ), ∃U [neg(X ,U ) ∧ or(U ,Y , t)]).

We let G denote the set of ground (that is, variable-free) atoms (for some suitably

large fixed alphabet).

Definition 2 (Head instance, head grounding)

A head instance of a predicate definition (H , ∃W [D ]) is an instance where all

head variables have been replaced by other terms, and all local variables remain

unchanged. A head grounding is a head instance where the head is ground.

For example, (implies(t , f ), ∃U [neg(t ,U )∧or(U , f , t)]) is a head grounding of the

implies/3 definition. Later we shall define models and “immediate consequence”

functions for two-, three-, and four-valued semantics. The use of head groundings,

rather than more conventional approaches is a technical convenience which allows

us to emphasize the relationship between models and immediate consequence.

3 Interpretations and models

In two-valued logic, an interpretation is a mapping from G to 2 = {f , t}. To give

meaning to recursively defined predicates, the usual approach is to impose some

structure on G → 2, to ensure that we are dealing with a lattice, or a semi-lattice at

least. Given the traditional “closed-world” assumption (that a formula is false unless

it can be proven true), the natural ordering on 2 is this: b1 ≤ b2 iff b1 = f ∨ b2 = t.

The ordering on interpretations is the natural (pointwise) extension of ≤, equipped

with which G → 2 is a complete lattice.

Three-valued logic is arguably a more natural logic for the partial predicates that

emerge from pure Prolog programs, and more generally, for the partial functions

that emerge from programming in any Turing complete language. The case for three-

valued logic as the appropriate logic for computation has been made repeatedly,

starting with Kleene (1938) and pursued by the VDM school (for example Barringer

et al. (1984), Jones and Middelburg (1994)), and others. The third value, u, for

“undefined”, finds natural uses, for example as the value of p(b), given the program

in Figure 1.

With three- or four-valued logic, an interpretation becomes a mapping from G to

3 = {u, f , t} or to 4 = {u, f , t, i} (we discuss the role of the fourth value i shortly).

For compatibility with the way equality is treated in Prolog, we constrain interpre-

tations so x = y is mapped to t if x and y are identical (ground) terms, and to f

otherwise. This is irrespective of the set of truth values used. There are different
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p(a).

p(b) :- p(b).

p(c) :- not p(c).

p(d) :- not p(a).

Fig. 1. Small program to exemplify semantics

f

t

(a) Classical order 2

u

f t

(b) Kleene’s order 3

i

f t

(c) Naish’s order

u

f t

i

information
ordering ⊑

truth ordering ≤

(d) interlaced bilattice 4

Fig. 2. Partially ordered sets of truth values

choices for the semantics of the connectives. In Section 4.3 we discuss connec-

tives and give particular truth tables for the common connectives, corresponding

to Belnap’s four-valued logic (Belnap 1977) (the restriction to three-valued logic

that results from deleting rows and columns containing i corresponds to Kleene’s

(strong) three-valued logic K3 (Kleene 1938)).

We denote the ordering depicted in Figure 2(b) by ⊑,1 that is, b1 ⊑ b2 iff b1 =

u∨ b1 = b2, and we overload this symbol to also denote the ordering in Figure 2(d)

(that is, b1 ⊑ b2 iff b1 = u ∨ b1 = b2 ∨ b2 = i), as well of the natural extensions

to G → 3 or G → 4. We shall also use ⊒, the inverse of ⊑. In some contexts we

disambiguate the symbol by using a superscript: ⊒3 or ⊒4. Similarly, we use ≥2 for

the truth ordering with two values, and =2, =3 and =4 for equality of truth values

in the different domains. When the context allows, we write the partially ordered

set (2,≤) simply as 2, (3,⊑3) as 3, and (4,⊑4) as 4.

The structure in Figure 2(d) is the simplest of Ginsberg’s so-called bilattices

(Ginsberg 1988). The diamond shape can be considered a lattice from two distinct

angles. The ordering ≤ is the “truth” ordering, whereas ⊑ is the “information”

ordering. For the truth ordering we denote the meet and join operations by ∧ and

∨, respectively. For the information ordering we denote the meet and join operations

by ⊓ and ⊔, respectively. Thinking of the four elements as sets of classical values,

1 While (b) and (c) are structurally identical, u and i carry different meanings, as discussed later.
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with u = ∅, i = {f , t}, and f and t being singleton sets, the information ordering is

simply the subset ordering. Regarding the truth ordering, note that b1 ≤ b2 holds

if and only if b2 is at least as true as b1, and at the same time no more false.

That is, we can move up in the truth value ordering by adding truth, or removing

falsehood, or both. The bilattice in Figure 2(d) is interlaced: Each meet and each

join operation is monotone with respect to either ordering. The bilattice is also

distributive in the strong sense that each meet and each join operation distributes

over all the other meet and join operations.

An equivalent view of three- or four-valued interpretations is to consider an in-

terpretation to be a pair of ground atom sets. That is, the set of interpretations

I = P(G)×P(G). In this view an interpretation I = (TI ,FI ) is a set TI of ground

atoms deemed true together with a set FI of ground atoms deemed false. A ground

atom A that appears in neither is deemed undefined. Such a truth value gap may

arise from the absence of any evidence that A should be true, or that A should

be false. In a four-valued setting, para-consistency is a possibility: A ground atom

A may belong to TI ∩ FI . Such a truth value glut may arise from the presence of

conflicting evidence regarding A’s truth value.

The concept of a model is central to many approaches to logic programming.

A model is an interpretation which satisfies a particular relationship between the

truth values of the head and body of each head grounding. We now define how

truth for atoms is lifted to truth for bodies of definitions.

Definition 3 (Made true)

Let I = (TI ,FI ) be an interpretation. Recall that a ground equality atom is in TI

or FI , depending on whether its arguments are one and the same term.

For a ground atom A,

I makes A true iff A ∈ TI

I makes A false iff A ∈ FI

For a ground negated atom ¬A,

I makes ¬A true iff A ∈ FI

I makes ¬A false iff A ∈ TI

For a ground conjunction C = L1 ∧ · · · ∧ Ln ,

I makes C true iff ∀i ∈ {1, . . . n} I makes Li true

I makes C false iff ∃i ∈ {1, . . . n} I makes Li false

For a ground disjunction D = C1 ∨ · · · ∨ Cn ,

I makes D true iff ∃i ∈ {1, . . . n} I makes Ci true

I makes D false iff ∀i ∈ {1, . . . n} I makes Ci false

For the existential closure of a disjunction ∃W [D ],

I makes ∃W [D ] true iff

I makes some ground instance of D true

I makes ∃W [D ] false iff

I makes all ground instances of D false
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We use this to extend interpretations naturally so they map G and existential clo-

sures of disjunctions to 2, 3 or 4. We freely switch between viewing an interpretation

as a mapping and as a pair of sets. Thus, for any formula F ,

I (F ) =















u if I neither makes F true nor false

f if I makes F false and not true

t if I makes F true and not false

i if I makes F true and also false

Definition 4 (RD-Model)

Let D be 2, 3 or 4 and RD be a binary relation on D. An interpretation I is an

RD-model of predicate definition (H ,B) if, for each head grounding (H θ,Bθ), we

have RD(I (H θ), I (Bθ)). I is an RD-model of program P if it is an RD-model of

every predicate definition in P .

For example, a =2-model is a two-valued interpretation where the head and body

of each head grounding have the same truth value.

Another important concept used in logic programming semantics and analysis

is the “immediate consequence operator”. The original version, TP , took a set

of true atoms (representing a two-valued interpretation) and returned the set of

atoms which could be proved from those atoms by using some clause of program

P for a single deduction step.2 Here we give an equivalent definition based on how

we define interpretations. We write ΦP for the immediate consequence operator,

following Fitting (1985). Note, however, that we give ΦP a definition in terms of

head groundings (Definition 2), and the same definition is used for the two-, three-,

and four-valued cases alike.

Definition 5 (ΦP )

Given an interpretation I and program P , ΦP (I ) is the interpretation I ′ such that

the truth value of an atom H in I ′ is the truth value of B in I , where (H ,B) is a

head grounding of a definition in P .

Proposition 1

Let D be 2, 3 or 4. A (D-) interpretation I is a fixed point of ΦP iff I is a =D-model

of P .

Proof

This follows easily from the given definitions. Assume ΦP (I ) = I . Then, by defini-

tion of ΦP (I ), for each head grounding (H ,B) of some predicate definition in P ,

I (H ) =D I (B). That is, I is a =D-model of P . Conversely, assume I is a =D-model

of each predicate definition (H ,B). That is, H θ =D Bθ for all θ. Then, by definition

of ΦP , ΦP (I ) = I .

2 The original version, due to van Emden and Kowalski (1976), used ‘T ’, but TP has become
standard. Various definitions which generalise TP to 3 and 4 have been given (Apt and Bol
1994).
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4 Logic program operational semantics

We first discuss some basic notions and how Clark’s two-valued approach to logic

program semantics fits with what we have presented so far. Then we discuss the

Fitting/Kunen three-valued approach and Fitting’s four-valued semantics.

4.1 Two-valued semantics

There are three aspects to the semantics of logic programs: proof theory, model

theory and fixed point theory (see Lloyd (1984), for example). The proof theory

is generally based on resolution, often some variant of SLDNF resolution (Clark

1978). This gives a top-down operational semantics, which is not our main focus

but is briefly discussed in Section 12. The model theory gives a declarative view of

programs and is particularly useful for high level reasoning about partial correct-

ness. The fixed point semantics, based on ΦP or TP , gives an alternative “bottom

up” operational semantics (which has been used in deductive databases) and which

is also particularly useful for program analysis.

The simplest semantics for pure Prolog disallows negation and treats a Prolog

program as a set of definite clauses. Prolog’s :- is treated as classical implication,

←, that is, ≥2-models are used. There is an important soundness result: if the

programmer has an intended interpretation which is a model, any ground atom

which succeeds is true in that model. The (≤) least model is also the least =2-

model and the least fixed point of ΦP , which is monotone in the truth ordering (so

a least fixed point always exists). The set of true atoms in this least model is the

set of atoms which are true in all ≥2-models (and =2-models) and is also the set of

atoms which have a successful derivation using SLD resolution. For these reasons,

this is the accepted semantics for Prolog programs without negation.

To support negation in the semantics, Clark (1978) combined all clauses defining

a particular predicate into a single “if and only if” definition which uses the classical

bi-implication↔. This is called the Clark completion comp(P) of a program P . Our

definitions are essentially the same, but we avoid the ↔ symbol. In this paper’s

terminology, Clark used =2-models, which correspond to classical fixed points of

ΦP . Clark specifically considered logical consequences of comp(P): atoms which

were true in all =2-models.

The soundness result above applies, and any finitely failed ground atom must

also be false in the programmer’s intended interpretation, if this interpretation is a

model. However, because ΦP is non-monotone in the truth ordering when negation

is present, there may be multiple minimal fixed points/models, or there may be

none. For example, using Clark’s semantics for the program in Figure 1, there is no

model and no fixed point due to the clause for p(c), yet the query p(a) succeeds

and p(d) finitely fails. Thus the Clark semantics does not align particularly well

with the operational semantics.
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4.2 Three-valued semantics

Even in the absence of negation, a two-valued semantics is lacking in its inabil-

ity to distinguish failure and looping. Mycroft (1984) explored the use of many-

valued logics, including 3, to remedy this. Mycroft discussed this for Horn clause

programs, and others, including Fitting (1985) and Kunen (1987), subsequently

adapted Clark’s work to a three-valued logic, addressing the problem of how to

account properly for the use of explicit negation in programs.

In a two-valued setting, the Clark completion may be inconsistent, witness the

completion of the clause for p(c) in Figure 1. Hence the Clark completion is unable

to give a reasonable meaning to p(a), p(b), and p(d), even though these atoms do

not depend on p(c). If we were to delete the clause for p(c) in Figure 1, the Clark

semantics would map p(b) to f, even though it does not finitely fail. The reason is

that the smallest 2-valued model of the Clark completion p(b) ⇔ p(b) maps p(b)

to f.

However, a =3-model always exists for a Clark-completed program; for example,

p(c) takes on the third truth value. Moreover, since ΦP is monotone with respect

to the information ordering, a least fixed point always exists and coincides with

the least =3-model. Ground atoms which are t in this model (such as p(a) in

Figure 1) are those which have successful derivations, while ground atoms which

are f (such as p(d)) are those which have finitely failed SLDNF trees (Clark 1978).

Atoms with the third truth value (p(b) and p(c)) must loop. Atoms which are

t or f in the Fitting/Kunen semantics may also loop if the search strategy or

computation rule are unfair (even without negation, t atoms may loop with an

unfair search strategy). Furthermore, when negation is present, a computation may

flounder owing to a negated call which never becomes ground and hence is never

selected (this is a fourth possible behaviour). However the Fitting/Kunen approach

does align the model theoretic and fixed point semantics much more closely to the

operational semantics of Prolog than the approach of Clark, and we can imagine

an idealised logic programming language where the alignment is precise.

ΦP has a drawback, though: while monotone, it is not in general continuous. Blair

(1982) shows that the smallest ordinal β for which Φβ
P (⊥) is the least fixed point

of ΦP may not be recursive3 Kunen (1987) shows that, with a semantics based on

three-valued Herbrand models (all models or the least model), the set of ground

atoms true in such models may not be recursively enumerable4. Kunen instead

suggests a semantics based on any three-valued model and shows that truth (t) in

all =3-models is equivalent to being deemed true by Φn
P (⊥) for some n ∈ N. Hence

Kunen proposes Φω
P (⊥) as the meaning of program P . For a given P and ground

atom A, it is decidable whether A is t in Φn
P (⊥), so whether A is t in Φω

P (⊥) is

semi-decidable.

For simplicity, in this paper we take (the possibly non-computable) M = lfp(ΦP )

3 The (possibly transfinite) powers of ΦP are defined the standard way: For a successor ordinal

β, Φβ
P
(x) = ΦP (Φβ−1

P
(x)), and for a limit ordinal β, Φβ

P
(x) =

⊔
α<β Φα

P (x).
4 We use ⊥ to denote the smallest interpretation with respect to ⊑.
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to be the meaning of a program, that is, the least =3-model. However, since we

shall be concerned with over-approximations to M , what we shall have to say will

apply equally well if Kunen’s Φω
P (⊥) is assumed.

4.3 Four-valued semantics

Subsequent to his three-valued proposal, Fitting recommended, in a series of papers

(1988; 1989; 1991b; 1991a; 2002), bilattices as suitable bases for logic program

semantics. The bilattice 4 (Figure 2(d)) was just one of several studied for the

purpose, and arguably the most important one.

Fitting’s motivation for employing four-valued logic was, apart from the elegance

of the interlaced bilattices and their algebraic properties, the application in a logic

programming language which supports a notion of (spatially) distributed programs.

In this setting there is a natural need for a fourth truth value, ⊤ (our i), to denote

conflicting information received from different nodes in a computing network.

In the language proposed by Fitting (1991a), the traditional logical connectives

used on the right-hand sides of predicate definitions are explained in terms of the

truth ordering. Negation is reflection in the truth ordering: ¬u = u, ¬f = t, ¬t = f

and ¬i = i, conjunction is meet (∧), disjunction is join (∨), and existential quantifi-

cation is the least upper bound (
∨

) of all instances. These tables give conjunction,

disjunction and negation in 4:

∧ u t f i

u u u f f

t u t f i

f f f f f

i f i f i

∨ u t f i

u u t u t

t t t t t

f u t f i

i t t i i

¬

u u

f t

t f

i i

The operations ⊓ and ⊔ are similarly given by Figure 2(d). Fitting refers to ⊓ (he

writes ⊗) as consensus, since x ⊓ y represents what x and y agree about. The ⊔

operation (which he writes as ⊕) he refers to as gullibility, since x ⊔ y represents

agreement with both x and y , whatever they say, including cases where they dis-

agree. Palmer (1997) also uses this logic with another parallel logic programming

language, Andorra Kernel Language. Although AKL does not support ⊓ or ⊔ as

explicit language primitives, Palmer’s AKL compiler uses such operations in its

analysis of parallel sub-computations which may or may not agree on their results.

The idea of an information (or knowledge) ordering is familiar to anybody who

has used domain theory and denotational semantics. To give meaning to recursively

defined objects we refer to fixed points of functions defined on structures equipped

with some ordering—the information ordering. This happens already in the three-

valued approaches to semantics discussed above. Three-valued semantics does use

the distinction between a truth ordering ≤ and an information ordering ⊑, but it

does not expose it as radically as the bilattice. In Fitting’s words, the three-valued

approach, “while abstracting away some of the details of [Kripke’s theory of truth]

still hides the double ordering structure” (Fitting 2006).
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The logic programming language of Fitting (1991a) contains operators ⊗ and

⊕, reflecting the motivation in terms of distributed programs. We, on the other

hand, deal with a language with traditional pure Prolog syntax. If the task was

simply to model its operational semantics, having four truth values rather than

three would offer little, if any, advantage. However, our motivation for using four-

valued logic is very different to that of Fitting. We find compelling reasons for the

use of four-valued logic to explain certain programming language features, as well

as to embrace, semantically, such software engineering aspects as program correct-

ness with respect to programmer intent or specification, declarative debugging, and

program analysis. We next discuss one of these aspects.

5 Three-valued specification semantics

Naish (2006) proposed an alternative three-valued semantics. Unlike other ap-

proaches, the objective was not to align declarative and operational semantics. In-

stead, the aim was to provide a declarative semantics which can help programmers

develop correct code in a natural way. Naish argued that intentions of programmers

are not two-valued. It is generally intended that some ground atoms should succeed

(be considered t) and some should finitely fail (be considered f) but some should

never occur in practice; there is no particular intention for how they should behave

and the programmer does not care and often does not know how they behave. An

example is merging lists, where it is assumed two sorted lists are given as input:

it may be more appropriate to consider the value of merge([3,2],[1],[1,3,2])

irrelevant than to give it a classical truth value, since a precondition is violated. Or

consider this program:

or2(t, _, t). or3(_, t, t).

or2(f, B, B). or3(B, f, B).

It gives two alternative definitions of or (previously defined in Section 2), both de-

signed with the assumption that the first two arguments will always be Booleans.

If they are not, we consider the atom to be inadmissible (a term used in debugging

(Pereira 1986; Naish 2000)) and give it the truth value i. Interpretations can be

thought of as the programmer’s understanding of a specification, where i is used for

underspecification of behaviour. The same three-valued interpretation can then be

used with all three definitions of or. A programmer can first fix the interpretation

then code any of these definitions and reason about their correctness. In contrast,

both the Clark and Fitting/Kunen semantics assign different, incompatible mean-

ings to the three definitions, with atoms such as or3(4,f,4) and or2(t,[],t)

considered t and or3(t,[],t) considered f. In order for the programmer’s intended

interpretation to be a =2-model or =3-model, unnatural distinctions such as these

must be made. Naish (2006) argues that it is unrealistic for programmers to use

such interpretations as a basis for reasoning about correctness of their programs.

In Section 6 we consider a somewhat larger example in more depth.

Although Naish uses i instead of u as the third truth value, his approach is

structurally the same as Fitting/Kunen’s with respect to the ordering, Figure 2(b)
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and (c), the ΦP operator and the meaning of connectives used in the body of

definitions. The key technical difference is how Prolog’s :- is interpreted. Fitting

generalises Clark’s classical↔ to ∼= or “strong equivalence”, where heads and bodies

of head groundings must have the same truth values. Naish defined a different

“arrow”, ←, which is asymmetric, but not a conservative extension of classical

implication (so the choice of symbol is perhaps misleading). In addition to identical

truth values for heads and bodies, Naish allows head groundings of the form (i, f)

and (i, t). The difference is captured by these tables (Fitting left, Naish right):5

∼= t f u

t t f f

f f t f

u f f t

← t f i

t t f f

f f t f

i t t t

Naish’s arrow captures the principle that, if a predicate is called in an inadmissible

way, then it does not matter if it succeeds or fails. The definition of a model uses

this weaker “arrow”; we discuss it further in Section 6. Naish (2006) shows that

for any model, only t and i atoms can succeed and only f and i atoms can finitely

fail. In models of the code in Figure 1, p(b) can be t or f or i but p(c) can only

be i. For practical code, programmers can reason about partial correctness using

intuitive models in which the behaviour of some atoms is unspecified.

6 Four-valued specification semantics

The Fitting/Kunen and Naish approaches all use three truth values, the Kleene

strong three-valued logic for the connectives in the body of definitions, and the same

immediate consequence operator. It is thus tempting to assume that the “third”

truth value in these approaches is the same in some sense. This is implicitly assumed

by Naish (2006) when he compares different approaches. However, the third truth

value is used for very different purposes in the approaches being compared. Fitting

(1985) and Kunen (1987) use it to make the semantics more precise than Clark—

distinguishing success and finite failure from nontermination (neither success nor

finite failure). Naish (2006) uses it to make the semantics less precise than Clark,

allowing a truth value corresponding to success or finite failure. Thus we believe

it is best to treat the third truth values of Fitting/Kunen and Naish as duals

instead of the same value. Naish treats i as the bottom element whereas in 4 it

is more naturally the top element, with the ordering of Naish inverted. Because

conjunction, disjunction and negation in 4 are symmetric in the information order,

the third value in the Kleene strong three-valued logic can map to either the top

or bottom element in 4. This is why the third truth values in Fitting/Kunen and

Naish are treated identically, even though they are better viewed as semantically

distinct.

5 We abuse notation here: ∼= and ← are not actually used as connectives, so the table entries
should really be “model” and “not model” rather than t and f.
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% Checks A-B = E-F, where all are natural numbers,

% represented in Peano style with 0 and s/1

% This definition is common to programs P1-P4

eq_diff(A, B, E, F) :- sub(A, B, D), sub(E, F, D).

% sub/3 definition for P1 % sub/3 definition for P3

sub(0, 0, 0). sub(A, A, 0).

sub(s(A), 0, s(D)) :- sub(A, 0, D). sub(A, B, s(D)) :-

sub(s(A), s(B), D) :- sub(A, B, D). not(A=B), sub(A, s(B), D).

% sub/3 definition for P2 % sub/3 definition for P4

sub(A, 0, A). sub(A, A, 0).

sub(s(A), s(B), D) :- sub(A, B, D). sub(A, B, s(D)) :- sub(A, s(B), D).

Fig. 3. Programs P1–P4 for subtraction over natural numbers

The four values t, f, i and u are associated with truth/success, falsehood/finite

failure, inadmissibility (the Naish third value) and looping/error (the Fitting/Kunen

third value). Inadmissibility can be seen as saying that both success and failure are

correct, so we can see it as the union of both. Atoms which are u in the Fit-

ting/Kunen semantics neither succeed nor finitely fail. Thus, as already pointed

out, the information ordering can also be seen as the set ordering, ⊆, if we inter-

pret the truth values in 4 as sets of Boolean values.

Consider the four programs depicted in Figure 3, which have a common definition

of eq_diff/4 (which checks if the differences of two pairs of natural numbers are the

same) but different definitions of sub/3 (which performs subtraction over natural

numbers). These programs have different sets of ground atoms which succeed and

finitely fail; we discuss these in more detail later. For some of the programs there

are ground atoms which neither succeed nor finitely fail and the Fitting/Kunen se-

mantics has the advantage of reflecting this whereas Clark’s cannot. For example,

the same set of atoms succeed in P3 and P4 (the least two-valued models, used by

Clark, exist and are the same) but some atoms such as eq_diff(s(0),0,0,s(0))

finitely fail in P3 but loop in P4 (so the least three-valued models differ). Naish’s

semantics has the advantage of allowing the programmer to reason about correct-

ness with respect to intentions or specifications which are imprecise. For example,

a programmer may only want to specify the desired behaviour of ground atoms

eq_diff(A,B,E,F) where all arguments are natural numbers (of the form sn(0))

and A-B and E-F are defined over natural numbers; other atoms can reasonably

be considered inadmissible. This allows us to simply establish partial correctness

of all four programs — the behaviours differ, but only for atoms the programmer

does not care about. The four-valued semantics which we propose here combines

the advantages of the Fitting/Kunen and Naish approaches within a single unified

framework.

We now show how Naish’s semantics can be combined with that of Fitting/Kunen

and generalised to 4. Adding the truth value i is a conservative extension to the

Fitting/Kunen semantics. The three-valued fixed points of ΦP are preserved, in-

cluding the least fixed point, and the way the semantics describes what is computed
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is unchanged, though the additional truth value can be useful for approximating

what is computed. However, adding the truth value u to the Naish semantics does

allow us to describe more precisely what is intended. There are occasions when

both the success and finite failure of an atom are considered incorrect behaviour

and thus u is an appropriate value to use in the intended interpretation. We give

three examples. The first is an interpreter for a Turing-complete language. If the

interpreter is given (the representation of) a looping program it should not succeed

and it should not fail. The second is an operating system. Ignoring the details of

how interaction with the real world is modelled in the language, termination means

the operating system crashes. The third is code which is only intended to be called

in limited ways, but is expected to be robust and check its inputs are well formed.

Exceptions or abnormal termination with an error message are best not considered

success or finite failure. Treating them in the same way as infinite loops in the se-

mantics may not be ideal but it is more expressive than using the other three truth

values (indeed, “infinite” loops are never really infinite because resources are finite

and hence some form of abnormal termination results).

Naish (2006) defines models in terms of the← described earlier and shows that I

is a model if and only if I ⊒3 ΦP (I ). The significance of this proposition is not noted

by Naish (2006), but it prompts a key observation: the ← defines the information

order on truth values! The classical arrow defines the truth ordering on two values;

Naish’s arrow defines the orthogonal ordering in the three-valued extension. It is

therefore clear how Naish’s arrow can be generalised to 4. The models of Naish

(2006) are ⊒3-models, which can be generalised to ⊒4-models, and Naish’s arrow

is generalised as ⊒4 (treating both as connectives), with the following truth table:

⊒4 u t f i

u t f f f

t t t f f

f t f t f

i t t t t

Proposition 2

I is a ⊒4-model of P iff ΦP (I ) ⊑ I .

Proof

I is a ⊒4-model iff, for every head grounding (H ,B) of P , I (B) ⊑ I (H ). This is

equivalent to stating that if I makes B true then I makes H true, and also, if I

makes B false then I makes H false. But this is the case iff ΦP (I ) ⊑ I , by the

definition of ΦP .

It is easy to see that if I is a ⊒3-model of P then I is a ⊒4-model of P . However,

the converse is not necessarily true, so the results of Naish (2006) cannot be used

to show properties of four-valued models. However, such properties can be proved

directly, using properties of the lattice of interpretations.

Proposition 3

The least ⊒4-model of P is lfp(ΦP ).
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Proof

By the definition of ⊒4-model, I is a ⊒4-model iff ΦP (I ) ⊑ I . Since ΦP is monotone,

the Knaster-Tarski theorem (Tarski 1955) establishes lfp(ΦP ) as the least I such

that ΦP (I ) ⊑ I . Hence lfp(ΦP ) is the least ⊒4-model of P .

For reasoning about partial correctness, the relationship between truth values in an

interpretation and operational behaviour is crucial.

Theorem 1

If I ⊒4 lfp(ΦP ) then no t atoms in I can finitely fail, no f atoms in I can succeed,

and no u atoms in I can finitely fail or succeed.

Proof

The least fixed point in the four-valued case is the same as the least fixed point in

the three-valued case. Hence (Kunen 1987) finitely failed atoms are f in lfp(ΦP ),

successful atoms are t in lfp(ΦP ), and u atoms in lfp(ΦP ) must loop. From the ⊑

ordering, an atom mapped to f by I can only be mapped to f or u by lfp(ΦP ).

Similarly, atoms which I maps to t can only be mapped to t or u by lfp(ΦP ), and

u atoms can only be mapped to u.

Corollary 1

If I is a ⊒4-model of P then no t atoms in I can finitely fail, no f atoms in I can

succeed and no u atoms in I can finitely fail or succeed.

Proof

From Theorem 1 and Proposition 3.

These results about the behaviour of t and f atoms are essentially the two soundness

theorems, for finite failure and success, respectively, of Naish (2006). The result for

u atoms is new. The relationship between the (idealised) operational semantics and

various forms of four-valued model-theoretic semantics can be summarised by the

following Table (the last row summarises Corollary 1). It is a refinement of Table 1

of Naish (2006), which is the same except it uses three-valued models and conflates

i and u.

operational succeed loop fail

least =4-model t u f

any =4-model t t/u/i/f f

any ⊒4-model t/i t/u/i/f i/f

Consider again the four programs depicted in Figure 3. Table 1 describes seven

interpretations for these programs. I0 is the typically intended interpretation, with

inadmissibility of eq_diff/4 defined as before, sub(A,B,C) inadmissible if A or B

are not natural numbers or B>A, and other atoms partitioned into t and f in the

intuitive way. I1, I2, I3 and I4 are the least four-valued models of the programs

P1–P4, respectively. The truth values in these interpretations also align with the
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I0 I1 I2 I3 I
′

3 I
′′

3 I4

eq_diff(s(0),0,s(s(0)),s(0)) t t t t t t t

eq_diff(s(0),0,0,0) f f f f f f u

eq_diff([],[],[],[]) i f f t t t t

eq_diff([],0,[],0) i f t u f t u

eq_diff(s(0),0,0,s(0)) i f f f f f u

eq_diff(0,s(0),0,s(0)) i f f u f t u

P1 least model X

P2 least model X

P3 least model X

P4 least model X

P1 =4-model X

P2 =4-model X

P3 =4-model X X X

P4 =4-model X

P1 ⊒
4-model X X

P2 ⊒
4-model X X

P3 ⊒
4-model X X X X

P4 ⊒
4-model X X X X X

Table 1. Seven interpretations of programs P1–P4 from Figure 3

operational behaviour of the atoms in Prolog. I ′3 and I ′′3 are the same as I3 except

that atoms which are u in I3 are f and t in I ′3 and I ′′3 , respectively. The top

section of Table 1 gives the truth values of several representative atoms for each

interpretation; we assume the existence of constant [] in the set of function symbols

to show behaviour of “ill-typed” atoms. I1, I ′3 and I ′′3 are two-valued, with I1 the

least two-valued model (using the truth ordering) of P1 and I ′3 the least two-valued

model of both P3 and P4.

The later parts of Table 1 give which of these interpretations are certain kinds of

four-valued models for the different programs. The four least models of the respec-

tive programs are distinct, reflecting the different behaviours. I ′3 and I ′′3 are not the

least model of P3 but they are =4-models.

Note carefully that the intended interpretation, I0, is a ⊒4-model of all programs.

For the four interpretations shown which are ⊒4-models of P3, we have I0 ⊒ I ′3 ⊒ I3
and I0 ⊒ I ′′3 ⊒ I3 with I ′3 and I ′′3 incomparable in the information order. P4 also

has all these interpretations as models, along with I4, which is below I3.

Also note how we use the two non-classical values in 4, that is, u and i, for quite

distinct purposes. The two- and three-valued approaches to semantics do not allow

such a complete picture of how these programs behave, along with the ways they

can be viewed by programmers.

The use of ⊒4-models allows simple and intuitive verification of partial correct-

ness of all programs but does not distinguish between total correctness (P1–P3)

and only partial correctness (P4). However, even analysis of least models does not

guarantee total correctness for Prolog programs because alignment of truth values

and behaviour assumes fairness of the search strategy (for success) and the com-

putation rule (for finite failure) and non-floundering whenever negation is present.

For example, if we reverse the order of the two sub-goals in the sub/3 definition in
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Fig. 4. Least vs typical intended ⊒
4-model

=2

=3

=4 ⊒
3

⊒
4

weaker

Fig. 5. Relationship between model definitions

P3 then with Prolog’s normal left to right computation rule, P3 behaves the same

as P4 for the atoms shown.

Figure 4 gives a graphical representation of how the least model of a program

compares with a typical intended model. In the least model, no atoms are i, and

(ideally) there is a correspondence between the truth values of atoms and their

behaviour. However, the distinction between these categories can be subtle and

un-intuitive (hence the wiggly lines). For example, the atom eq_diff([],0,[],0)

may succeed, finitely fail or loop, depending on how sub/3 is coded. In a typical

intended interpretation there are atoms which are i (they may have any other truth

value in the least model). This allows the distinction between the categories to be

more intuitive and allows a single interpretation to be a model of many different

programs with different behaviours for the i atoms. The set of u atoms in a typical

intended interpretation is a subset of the u atoms in the minimal model (often it is

the empty set, which corresponds to a three-valued model of Naish (2006)). Atoms

which are u in the minimal model can have any truth value in the intended model.

Figure 5 shows the relationship between the five different definitions of a model we

have considered. Any interpretation which is a model according to one definition

is also a model according to all definitions above. Weaker definitions of models

allow more flexibility in how we think of our programs, yet still guarantee partial

correctness.
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7 A “model meet” property

With the classical logic approach for definite clause programs, we have a useful

model intersection property: if M and N are (the set of true atoms in) models

then M ∩ N is (the set of true atoms in) a model. Proposition 1 of Naish (2006)

generalises this result using the truth ordering for three-valued interpretations, and

Proposition 2 of Naish (2006) gives a similar result which mixes the truth and

information orderings. However, none of these results hold for logic programs with

negation. Here we give a new analogous result, using the information ordering,

which holds even when negation is present. This will be utilised in our discussion

of modes in Section 9.

Proposition 4

If M and N are ⊒4-models of program P then M ⊓ N is a ⊒4-model of P .

Proof

Assume M and N are ⊒4-models of P . By Proposition 2, ΦP (M ) ⊑ M and

ΦP (N ) ⊑ N , since M and N are models. By monotonicity, ΦP (M ⊓N ) ⊑ ΦP (M ) ⊑

M , and ΦP (M ⊓ N ) ⊑ ΦP (N ) ⊑ N . It follows that ΦP (M ⊓ N ) ⊑ M ⊓ N , so by

Proposition 2, M ⊓ N is a model of P .

For example, with the models of P3 in Table 1, I 3′ ⊓ I 3′′ = I 3. The corresponding

result does not hold for =4-models. Consider the following program:

p :- p.

q :- q.

r :- p ; q ; s.

s :- p ; q ; not r.

Let M be the interpretation which maps (p,q,r,s) to (t,f,t,t), respectively, and let

N be the interpretation (f,t,t,t). Both M and N are =4-models. The meet, M ⊓N ,

is (u,u,t,t) but ΦP applied to this interpretation is (u,u,t,u). So M ⊓ N is a ⊒4-

model but not a =4-model. (This example also shows that ΦP , while monotone, is

not in general an increasing function.)

8 Program analysis

This section and the three that follow it present several applications of the four-

valued semantics we have introduced. We hope to convince the reader that there are

numerous situations in which four-valued logic is the natural setting for reasoning

about logic programs and their behaviour, and that ⊒4-models in particular can

play an important role.

Four-valued logic provides a convenient setting for static analysis of logic pro-

grams. The reason is that program analysis almost always is concerned with run-

time properties that are undecidable, so some sort of approximation is needed, to

guarantee finiteness of analysis. As an example, we show how the program analy-

sis framework proposed by Marriott and Søndergaard (1992) generates four-valued

interpretations of the kind we have discussed.
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Many program analyses for logic programs try to detect how logic variables are

being used or instantiated. The well-known TP function and Fitting’s ΦP function

yield ground atomic formulas, and so semantic definitions based on these functions

are not ideal as a basis for static analysis which intends to express what happens

to variables at runtime. The s-semantics (Falaschi et al. 1988; Bossi et al. 1994)

is a non-ground version of the TP semantics. The s-semantics of a program P is

a set SP of possibly non-ground atoms, with the property that (a) the ground

instances of the atoms in SP give precisely the least Herbrand model of P , and (b)

the computed answer substitutions (Lloyd 1984) for a query Q can be obtained by

solving Q using the (potentially infinite) set SP . Letting A denote the set of atomic

formulas, the s-semantics of P is defined as the least fixed point of an “immediate

consequences” operator T v
P : P(A)→ P(A). More precisely,

T v
P (I ) =

{

hθ

∣

∣

∣

∣

C ≡ h : − b1, . . . , bn ∈ P , 〈a1, . . . , an〉 <<C I ,

θ = mgu(〈b1, . . . , bn〉, 〈a1, . . . , an〉)

}

where 〈a1, . . . , an〉 <<C I expresses that a1, . . . , an are variants of elements of I

renamed apart from C and from each other, and mgu gives the most general unifier

of two (sequences of) expressions. As an example, for the append program,

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

the least fixed point of T v
P is

{append([x1, . . . , xn], ys , [x1, . . . , xn|ys]) | n ≥ 0}

Codish and Søndergaard (2002) give an account of the role of various (goal-directed

as well as goal-independent) semantics, including the s-semantics, for the analysis

of logic programs.

Marriott and Søndergaard (1992) use Fitting’s three-valued semantics as a basis

for defining static analyses which over-estimate both a given program’s success set

and its finite failure set. Fitting’s ΦP operator generates pairs (S ,F ) of sets of

ground atoms, with the reading that every atom in S succeeds and every atom in

F finitely fails, and it only allows for pairs that satisfy S ∪ F = ∅. That is, there

are three cases for an atom: It can be contained in S (have the value t), it can be

contained in F (have the value f), or it can be absent from both (have the value

u). In the “approximate” version of Marriott and Søndergaard (1992), S and F are

allowed to share atoms. In the parlance of the present paper, these atoms are given

the value i, though in the context of analysis it means “don’t know” rather than

“don’t care”.

There are different ways in which we can guarantee finiteness of the static analy-

sis. One of the approaches used by Marriott and Søndergaard (1992) is to never

generate terms beyond a fixed, finite depth. We define the depth of a variable or a

constant to be 1, and for other terms we define depth inductively:

depth(t) = 1 + max {depth(u) | u is a proper subterm of t}·

The idea in depth-k analysis is that a term with a depth greater than k can be
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approximated by replacing each subterm at that depth by a fresh variable. The

pruned term approximates the original in the sense that the original is one of the

pruned term’s (possibly numerous) instances.

As an example, the following term, representing the infinite list of positive odd

integers [s(0),s(s(s(0))),s(s(s(s(s(0))))),...] (using successor notation for

non-negative integers) has the (finite) depth-10 approximation

[s(0),s(s(s(0))),s(s(s(s(s(0))))),s(s(s(s(s(s(s(0))))))),

s(s(s(s(s(s(s(s(_))))))))]

This is an imprecise approximation, as for example s(s(s(s(s(s(s(s(0))))))))

is an instance, but it is sufficiently precise to capture aspects of the original list,

such as the fact that it does not contain s(s(s(s(0)))), say.

The bottom-up analysis framework proposed by Marriott and Søndergaard (1992)

will mimic Fitting’s ΦP operator, except that it generates possibly non-ground

atoms, with the understanding that a non-ground atom represents the set of all its

ground instances. This opens up the possibility that some ground atoms (instances

of non-ground atoms) be classified as both t and f . For example, for the program

odd(s(0)).

odd(s(s(N)) :- odd(N).

p :- p.

it will produce a depth-10 approximation
(

{odd(sj (0)) | j ∈ {1, 3, 5, 7} ∨ j > 8}, {odd(sj (0)) | j ∈ {0, 2, 4, 6} ∨ j > 7}
)

Said differently, it creates a four-valued interpretation in which, for example, p

is mapped to u, odd(0) is mapped to f , odd(s(0)) is mapped to t, and atoms

odd(sj (0)) are mapped to i for all j > 8.

The “approximate” semantics that underpins the bottom-up analysis framework

is perfectly aligned with the semantics proposed in Section 6. A bottom-up analysis

of program P is expressed as an interpretation I = lfp(Φ′
P ) for some sound ap-

proximation Φ′
P of ΦP . In the case where all atoms are ground, I may also be a

fixed point of ΦP , that is, I = ΦP (I ) and I is a =4-model. The definition of “sound

approximation” (which ensures that the approximation must be at least as high in

the information order as the components it approximates) implies Φ′
P (I ) ⊒ ΦP (I ).

In general, since I = Φ′
P (I ), we have I ⊒ ΦP (I ) so I is a ⊒4-model.

9 Types and modes

We now briefly review the motivation for type and mode systems in logic program-

ming and show how ⊒4-models can play a role in designing and understanding mode

systems. Along the way we propose an expressive mode system, and a language of

mode annotations to support it.

The lack of a type discipline or similar restrictions on what constitutes acceptable

Prolog programs means that it is easy for programmers to make simple mistakes

which are not immediately detected by the Prolog system. A typical symptom is
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that the program fails unexpectedly, leading to rather tedious analysis of the com-

plex execution in order to uncover the mistake. One approach to avoid some runtime

error diagnosis is to impose additional discipline on the programmer, generally re-

stricting programming style somewhat, to allow the system to statically classify

certain programs as incorrect. Various systems of “types” and “modes” have been

proposed for this. An added benefit of some such systems is that they help make

implementations more efficient. Here we discuss systems of this kind at a very high

level and argue that four-valued interpretations potentially have a role in this area,

particularly in mode systems such as that of Mercury (Somogyi et al. 1995).

Type systems typically assign a type (say, Boolean, integer, list of integers) to

each argument of each predicate. This allows each variable occurrence in a clause to

also be assigned a type. One common error is that two occurrences of the same vari-

able have different types. For example, consider a predicate head which is intended

to return the head of a list of integers but is incorrectly defined as: head([_|Y],Y).

The first occurrence of Y is associated with the type “list of integers” and the other

is associated with type “integer”. If head is called with both arguments instantiated

to the expected types, it must fail. But head can succeed if it is called in different

ways. For example, with only the first argument instantiated it will succeed, albeit

with the wrong type for the second argument (and this in turn may cause a wrong

result or failure of a computation which calls head).

Type systems can be refined by considering the “mode” in which predicates are

called, or dependencies between the types of different arguments. This can allow

additional classes of errors to be detected. For example, we can say the first argu-

ment of head is expected to be “input” and the second argument can be “output”.

Alternatively (but with similar effect), we could say if the first argument is a list of

integers, the second should be an integer. To see that mode information transcends

type information, consider the (incorrect) definition head([_|Y],X). Here there is

a consistent assignment of types to variables, but it does not satisfy the stipulated

mode/type-dependency constraint. One high level property of several mode sys-

tems is that if input arguments are well typed then output arguments will be well

typed for any successful call. In fact, a stronger property is desirable: the whole suc-

cessful derivation should be well typed (otherwise we have a very dubious proof).

Typically, well typed inputs in a clause head imply well typed inputs in the body,

which implies well typed outputs in body, which implies well typed outputs in the

head. This idea is present in the “directional types” concept (Aiken and Lakshman

1994; Boye and Ma luszynski 1995), the mode system of Mercury (Somogyi et al.

1995), and the view of modes proposed in Naish (1996). Here we show the relevance

of four-valued interpretations to this idea, ignoring the details of what constitutes

a type (which differs in the different proposals) and what additional constraints

are imposed (neither Mercury nor directional types support cyclic dataflow, and

Mercury has additional interactions between types, modes and determinism).

We will present a mode system inspired by that of Mercury. Mercury allows types

to be defined using type declarations and declared for predicate arguments using

pred declarations; we adopt this verbatim. Mercury modes are declared using mode

declarations, which also declare determinism (the range of possible numbers of so-
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:- pred rev(list(T), list(T)).

:- mode rev(in, out) and (out, in).

rev([], []).

rev([H|T], R) :- rev(T, L), append(L, [H], R).

Fig. 6. Naive reverse with a group of two modes

lutions). We propose similar mode declarations which allow additional refinements.

Determinism information could also be added but we ignore this aspect here. Sim-

ilarly, we ignore issues surrounding negation. Mercury also supports an error/1

primitive which results in abnormal termination if called. It allows more precise

static analysis of modes (and of determinism) and we also adopt it.

Type and mode declarations document some aspects of how predicates are in-

tended to be used and how they are intended to behave. We define interpretations

which are consistent with these documented intentions. We assume there is a notion

of well typedness for each argument of each predicate in program P .

Definition 6 (Mode, mode group, mode interpretation and moded program)

A mode for predicate P is an assignment of “input” or “output” to each of P ’s

argument positions. A mode interpretation of P with a given mode m, MI (P ,m),

is a four-valued interpretation M such that the value of (ground) atom A in M is

• u, if the predicate is error/1, and otherwise:

• t, if all arguments are well-typed,

• i, if some input argument (according to m) is ill-typed, and

• f, if all input arguments are well typed but some output argument is ill-typed.

A mode group is a set of modes for a predicate. A mode interpretation of P with a

mode group {m1 . . .mk} is
d

1≤i≤k MI (P ,mi). A moded program is a program with

a mode group defined for each predicate. Mode interpretations for moded programs

are defined in the obvious way.

Note that the assignments u and t are independent of the mode(s).

For a mode group, an atom is i where there is no mode in the group for which all

input are well typed. Changing the mode(s) of a predicate so it can be used in more

flexible ways corresponds to changing the truth value of some atoms from i to f.

This makes the mode interpretation more precise (lower in the information order).

Asymmetry between t and f arises because mode analysis must “assume the worst”

with respect what can succeed, local variables in clauses are existentially quantified

in the body, and negated literals do not bind variables which appear in the rest

of the clause body. Figure 6 illustrates the syntax we use for defining the modes

of a predicate—mode groups are formed using the keyword “and”. The Mercury

equivalent is to use two separate mode declarations.

Mercury uses the notion of an implied mode—a mode m implies all modes whose

output arguments are a subset of those in m. For example, the mode (in,in) is

implied by either of the two declared modes for rev/2. The next proposition says

that mode interpretations are invariant under addition of implied modes.
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Proposition 5

The mode interpretation of predicate P with modes {m1 . . .mk} is the same as that

for P with modes {m1 . . .mk ,m
′} if the outputs of m ′ are a subset of the outputs

of some mj , 1 ≤ j ≤ k .

Proof

For each j we have that MI (P ,m ′) ⊒ MI (P ,mj ), since each input argument of mj is

an input argument of m ′. So MI (P ,m ′) ⊒
d

1≤j≤k MI (P ,mj ) and thus MI (P ,m ′)⊓
d

1≤j≤k MI (P ,mj ) =
d

1≤j≤k MI (P ,mj ).

If a mode interpretation of a moded program P is a ⊒4-model this gives us the

high level property discussed earlier:

Proposition 6

If a mode interpretation M of a moded program P is a ⊒4-model and A is a

successful atom which, for some mode of the predicate, has all input arguments

well typed, then A has all arguments well typed.

Proof

By Corollary 1, since M is a ⊒4-model and A succeeds, A must be t or i in M . By

the definition of mode interpretations, since A is not f and all input arguments are

well typed for some mode, all output arguments must be well typed as well.

For the stronger property to hold (the whole derivation being well-typed), the mode

interpretation being a ⊒4-model is not sufficient. A definition can have a t head

and a body which is a disjunction of a t atom which loops and an i atom which

succeeds: although the interpretation is a ⊒4-model, the only successful derivation

uses the inadmissible disjunct. To prevent such cases we impose an extra condition

on each disjunct in the body of a definition (or each clause in a Prolog program)

rather than the body of the definition as a whole:

Definition 7 (Well-moded)

A moded program P is well-moded with respect to mode interpretation M if M is

a ⊒4-model of P and for each head grounding of a definition (H , ∃W [C1∨· · ·∨Ck ])

where M (H ) = t, M (∃WCj ) 6= i, 1 ≤ j ≤ k .

In practice, it seems that the additional constraint rarely makes a difference. In the

examples we discuss below, whenever the interpretation is a ⊒4-model, the program

is well-moded with respect to the interpretation.

Lemma 1

If program P is well-moded, with mode interpretation M and atom A, with M (A) =

t, succeeds, then A is well typed and there is a ground predicate definition instance

(A, ∃W [C1 ∨ · · · ∨Ck ]) such that all literals in some Cj succeed and are assigned t

and all positive literals in Cj are well typed.
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% Extracts head of list. Has exactly one solution for all

% (admissible) calls. nonempty_head([],_) is inadmissible.

:- pred nonempty_head(list(T), T).

:- mode nonempty_head(in, out).

nonempty_head([H|_], H).

% Extracts head of list. Has exactly one solution for all

% (normally terminating) calls. checked_head([],_) throws an error.

:- pred checked_head(list(T), T).

:- mode checked_head(in, out).

checked_head([], _) :- error("head of empty list").

checked_head([H|_], H).

Fig. 7. Two versions of head for non-empty lists

Proof

Since M is a mode interpretation and M (A) = t, all arguments are well typed. A

successful disjunct Cj must exist; it cannot be i since P is well-moded, so it must

be t (only i and t disjuncts can succeed, by Corollary 1). Similarly, no literal in Cj

can be u, so all literals in Cj must be t, thus each positive literal in Cj must be

well typed.

Theorem 2

If P is a well-moded program and A is a successful atom which is t in the mode

interpretation of P , then there is successful derivation of A in which all successful

atoms are well typed.

Proof

By induction on the depth of the proof and Lemma 1.

Checking that a mode interpretation is a ⊒4-model (and the additional constraint

holds) requires the kind of analysis used in other forms of mode checking. For

example, consider again Figure 6. Assume the recursive clause for rev/2 uses mode

(in,out) and assume append/3 has mode (in,in,out). Mode analysis intuitively

reasons that if rev/2 is called with the first argument well typed ([H|T] is a list),

the recursive call will be called with its input argument well typed (T is a list), thus

in any successful call its output argument will be well typed (L is a list), the input

arguments to append/3 will be well typed so its argument will be well typed (R is

a list), so the head will be well typed. In other words, if we assume the head is t

or f, we can find an instance of the body which is t and the head must be t. Thus

there are no head clause instances of the form t:-i, f:-i, f:-t or t:-f (and the

head cannot be u since the predicate is not error/1), so the mode interpretation

is a ⊒4-model.

Sometimes the most natural intended interpretation has certain atoms assigned

i, but static mode analysis is unable to conclude such atoms are never called. In

Mercury this issue arises more with determinism, when analysis is unable to con-

clude that a given atom always succeeds. Using error/1 allows us to make static
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analysis more flexible by making the code more verbose and introducing some run-

time checking. As an example of this, consider extracting the head of a list. There

are situations where we expect this operation to be called on non-empty lists only

(so the computation has exactly one solution, or is “det” in Mercury terminology).

Figure 7 gives two codings. The first cannot easily be checked statically. Our pro-

posed mode system has no way to declare well-typed atoms as inadmissible, so

clauses of the form t:-i in our intended interpretation may be possible. Similarly,

Mercury cannot determine the code is “det”. The second is acceptable for Mer-

cury and also safe for our mode system. By changing the intended interpretation of

checked_head([],_) from i to u, the mode interpretation (where it is assigned t)

becomes a safe approximation to the intended interpretation. Thus, having mode

interpretations that can distinguish i from u can be helpful.

There is one more feature of the mode system we propose—allowing more than

one mode group per predicate. This feature is not supported in any other mode

systems. Separate mode groups are declared using the keyword “also”. In the fol-

lowing example each group has a single mode, but in general we can use a mixture

of “and” and “also”, with the former binding more tightly.

:- mode rev(in, out) also (out, in).

For the external view of a predicate, for example, how modes approximate the

behaviour of a non-recursive call to a predicate, “also” is treated identically to

“and” (the meet of the mode interpretations is used). However, for the internal

view of a predicate and how its definition is checked for well-modedness, we impose

a stronger constraint. The definition must be well-moded with respect to each

interpretation corresponding to a mode group. This implies it is also well moded

with respect to the meet (we give the case of two mode groups; the generalisation

to N mode groups is straightforward):

Proposition 7

If predicate P is well-moded with respect to mode interpretations MI 1 and MI 2
then it is well-moded with respect to M , where M = MI 1 ⊓MI 2.

Proof

M is a ⊒4-model, by Proposition 4. Consider a head grounding of the definition

of P , (H , ∃W [C1 ∨ · · · ∨ Ck ]). If M (H ) = t then MI 1(H ) = t or MI 2(H ) = t, so

MI 1(Cj ) 6= i or MI 2(Cj ) 6= i, so M (Cj ) 6= i, for 1 ≤ j ≤ k .

For sets of mutually recursive predicates there must be some set of mode interpreta-

tions S , the predicates must be well-moded with respect to each element of S , and

S must have a mode interpretation for each mode group in each of the predicates

(each mode group of a predicate must be “covered” by at least one element of S ).

Consider the naive reverse example with the mode declaration above and assume

append/3 has modes (in,in,out) and (out,in,in). There are two ⊒4-models

corresponding to the mode interpretations for modes (in,out) and (out,in), re-

spectively, and a third ⊒4-model which is the meet. However, if we swap the argu-

ments in the recursive call to rev/2, the meet is still a ⊒4-model but the other two
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:- pred rev_ra(list(T), list(T)).

:- mode rev_ra(in, out) also (out, in).

rev_ra([], []).

rev_ra([H|T], R) :- rev_rb(L, T), append(L, [H], R).

:- pred rev_rb(list(T), list(T)).

:- mode rev_rb(in, out) also (out, in).

rev_rb([], []).

rev_rb([H|T], R) :- rev_ra(L, T), append(L, [H], R).

Fig. 8. Mutually recursive reverse with complementary modes

mode interpretations are not ⊒4-models. Calling rev/1 in mode (in,out) requires

a recursive call in mode (out,in) and vice versa, so one mode alone is not sufficient

and mode checking with the “also” mode declaration would fail. Mode declarations

with “also” are stronger than those with “and”; they tell us more about the set

of ⊒4-models. The additional expressiveness can be used to detect more errors

(for example, if the arguments were swapped accidentally and the stronger mode

declaration was used).

The version of reverse with the arguments swapped can be specialised to two

mutually recursive predicates, shown in Figure 8. This has three ⊒4-models: one

with mode (in,out) for rev ra/2 and mode (out,in) for rev rb/2, another with

mode (out,in) for rev ra/2 and mode (in,out) for rev rb/2, and the third is

the meet. The program is well-moded with respect to all three and each mode group

of each predicate is covered by one of these models.

Figure 9 gives another example of the additional expressive power. The mode

declared for fold_and3/2 is redundant: it has (in,out) and the implied mode

(in,in). However, even though (in,in) is weaker in some sense, and its corre-

sponding mode interpretation is strictly higher in the information ordering, it is

not a ⊒4-model. Calling fold_and3/2 in mode (in,in) requires a recursive call in

mode (in,out). However, for fold_and3a/2, which computes the same thing, the

code is well-moded with respect to each of the mode interpretations, as expressed

by the “also”. The mode (in,in) does not rely on mode (in,out) and consider-

ably better efficiency can be achieved, because it can be statically determined (by

the Mercury compiler, for example) that no choice points are needed.

Precise analysis of declared types, modes, determinism, and so on, is useful for

uncovering program errors statically and increasing efficiency of implementations.

Such analysis distinguishes computations which (might) succeed from those which

(must) fail. Most proposals also support methods to restrict the ways in which

predicates should be used, for example, the input arguments should be well typed.

The more advanced proposals also support forms of abnormal termination, such as

error/1. The four-valued domain we use for the semantics of logic programs seems

particularly well suited to this kind of analysis. In particular, we have demonstrated

how type and mode declarations can be used to define four-valued interpretations

and how ⊒4-models are an important device for checking correctness of these dec-

larations.
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:- type b ---> t ; f. % Boolean

:- type k3 ---> t3 ; f3 ; i3. % Kleene

% ’and’ where third truth value means maybe true, maybe false

:- pred and3(k3, b, b).

:- mode and3(in, in, out).

and3(i3, _, f).

and3(i3, t, t).

and3(f3, _, f).

and3(t3, B, B).

% ’and3’ of each value in a list

:- pred fold_and3(list(k3), b).

:- mode fold_and3 (in, out) and (in, in). % latter is redundant

fold_and3([], t).

fold_and3([f3|_], f).

fold_and3([B3|B3s], R) :- fold_and3(B3s, R1), and3(B3, R1, R).

:- pred fold_and3a(list(k3), b).

:- mode fold_and3a (in, out) also (in, in).

fold_and3a([], t).

fold_and3a([f3|_], f).

fold_and3a([i3|_], f).

fold_and3a([i3|B3s], t) :- fold_and3a(B3s, t).

fold_and3a([t3|B3s], R) :- fold_and3a(B3s, R).

Fig. 9. Illustration of “and” versus “also” in modes

∀s∀s
′
subset(s, s ′) ↔ ∀e (member(e, s) → member(e, s ′))

subset([], _).

subset([E|SS], S) :- member(E, S), subset(SS, S).

member(E, [E|_]).

member(E, [_|S]) :- member(E, S).

list([]).

list([_|S]) :- list(S).

Fig. 10. First-order logic specification and Prolog definition of subset/2

10 Formal Specifications

In the early days of logic programming there was considerable interest in the rela-

tionship between specifications (particularly formal specifications written in classi-

cal first order logic) and logic programs (Clark and Sickel 1977; Hogger 1981; Sato

and Tamaki 1984; Kowalski 1985). This work generally overlooked what we here

have called inadmissibility. For example, Figure 10 shows a specification and Prolog

implementation of the subset/2 predicate given by Kowalski (1985), where sets are

represented as lists and member is the Prolog list membership predicate. Kowalski

(1985) shows that the implementation is a logical consequence of the specification.
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That is to say, the program P which defines subset is sound with respect to the

specification S : for all queries Q , if P |= Q then S |= Q . However, subset(true,42)

is true according to the specification, which is counter-intuitive, to say the least. If

the specification is modified to restrict both arguments to be lists, the program is

no longer a logical consequence (the program has subset([],42) as a consequence

but subset([],42) is no longer a consequence of the specification). When negation

is also considered, or even the fact that logic programs implicitly define falsehood

of some atoms, early approaches relating formal specifications and logic programs

based on classical logic seem unworkable.

With our approach it is natural to identify specifications with four-valued in-

terpretations. Our “intended interpretations” are essentially specifications, albeit

informal ones which exist only in the mind of programmers. However, we can also

design formal specification languages where the meaning of a specification is a sin-

gle four-valued interpretation. We propose such a language now. Although we can

never be sure that a formal specification accurately captures our intentions (as

Kowalski’s specification above shows), and fully automated verification is bound

to be intractable in general, cross-checking between a specification and code can

give us additional confidence in the correctness of our code. In the design of our

specification language we aim to utilise classical logic as far as possible, while al-

lowing the flexibility of all four values. Underspecification is supported by declaring

preconditions as well as postconditions.

Definition 8 (Specification)

A specification is a well formed formula (wff) ∆, a set of distinct atoms Ai in most

general form, a precondition wff αi for each Ai and a postcondition wff ωi for each

Ai .

For example, a precondition and postcondition of subset/2 could be defined

using syntax exemplified below (which could be supported by just declaring the

three keywords as operators in NU-Prolog or Mercury). In addition, ∆ would define

the predicates member/2 and list/1 using a syntax close to traditional first order

logic, or Prolog syntax could be used as shorthand for the Clark completion, for

example.

predicate subset(SS, S)

precondition list(S), list(SS)

postcondition all [E] (member(E, SS) => member(E, S)).

Definition 9 (Meaning of a specification)

The meaning of a specification is a four-valued interpretation for the Ai predicates,

such that each ground atom Aiθ is

• i, if precondition αiθ is false in any classical model of ∆, otherwise

• t, if postcondition ωiθ is true in all classical models of ∆,

• f, if postcondition ωiθ is false in all classical models of ∆, and

• u otherwise.
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With this, a subset/2 atom which has some non-list argument is given the value

i, and no subset/2 atom gets the value u. The other subset atoms are parti-

tioned into t and f in the intuitive way. Thus the counter-intuitive consequences of

Kowalski’s specification are mapped to i rather than t.

Kowalski and others attempted to relate the meanings of formal specifications and

programs via the truth ordering. In our approach we relate them via the information

ordering. A program is correct with respect to a specification if and only if the

meaning of the specification is greater than or equal to (⊒4) the least ⊒4-model of

the program. The meaning of the specification being a ⊒4-model of the program is a

sufficient condition for this and Theorem 1 gives the partial correctness results. For

example, the meaning of the subset/2 specification is a ⊒4-model of the program.

There can be different logic programs, with different behaviours, which are correct

according to a specification—they can be seen as refinements of the specification.

If the specification is not a ⊒4-model of the program, the program may succeed or

finitely fail in ways which are inconsistent with the specification (wrong answers or

missing answers).

As we develop an implementation from an initial high level specification, we

generally move lower in the information order. For example, we may find it useful

to strengthen the specification above so subset/2 can be used in more flexible

ways in our system. Moving the list(SS) constraint from the precondition to the

postcondition is like changing the mode declaration for subset/2 from (in,in)

to (out,in). The meaning of the stronger specification is lower in the order, with

some previously i atoms such as subset(abc,[]) now being f. As we proceed from

specification to code we go lower still: subset([],42) is i in both specifications

but t in the least ⊒4-model of the program. We believe our approach of having a

complete lattice in the information order can provide a simple, elegant and accurate

view of the relationship between specifications and programs.

Our proposed specification language is inspired in part by the VDM-SL specifica-

tion language, which has preconditions but is based on the functional programming

paradigm (functions are specified rather than predicates). The underlying theory

is the logic of partial functions, LPF (Barringer et al. 1984; Jones and Middel-

burg 1994), with three truth values. Although specifications have preconditions,

the primary use of the non-classical truth value is to represent undefined, or u—

the meaning of a recursively defined function is given by the least fixed point of

the definition. There is no separate truth value to represent unspecified, or i. Once

again we contend that these semantically distinct notions are best represented by

distinct truth values.

11 Declarative debugging

The semantics of Naish (2006) is closely aligned with declarative debugging (intro-

duced in Shapiro (1983)) and the term “inadmissible” comes from this area (Pereira

1986). The Naish semantics gives a formal basis for the three-valued approach to

declarative debugging of Naish (2000) (using t, f, and i) as applied to Prolog. Given

a goal whose behaviour is inconsistent with the intended three-valued interpretation
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(it has a wrong or missing answer), the debugger identifies some part of the code

(such as a clause instance) which demonstrates that the intended interpretation is

not a ⊒3-model. As we have demonstrated in Section 6, four values allow us to

express programmer intentions more precisely than three. In this section we sketch

how four-valued interpretations can be supported by declarative debuggers.

The declarative debugging scheme represents the computation as a tree; sub-trees

represent sub-computations. Each node is classified by an oracle as correct, erro-

neous or inadmissible. The debugger searches the tree for a buggy node, which is

an erroneous node with no erroneous children. If all children are correct it is called

an e-bug, otherwise (it has an inadmissible child) it is called an i-bug. Every finite

tree with an erroneous root contains at least one buggy node and finding such a

node is the job of a declarative debugger. To diagnose wrong answers in Prolog a

proof tree (Lloyd 1984) is used to represent the computation. Nodes containing t, f

and i atoms are correct, erroneous and inadmissible, respectively. To diagnose com-

putations that miss answers, a different form of tree is used, and nodes containing

finitely failed t, f and i atoms are erroneous, correct, and inadmissible, respectively.

Naish (2000) also spells out how to deal with some additional complexities which

arise, such as non-ground wrong answers and computations which return some but

not all correct answers; we skip the details here. Buggy nodes correspond to in-

stances of definitions of the form t:-f, f:-t, t:-i or f:-i. The first two are e-bugs

(the kind diagnosed by more conventional two-valued declarative debuggers); the

last two are i-bugs.

Four-valued interpretations can be used in place of three-valued interpretations

in this scheme, as follows. The debugging algorithm remains unchanged; only the

way the oracle classifies nodes is modified. For wrong answer diagnosis, u is treated

the same as f—a sub-computation which succeeds contrary to our intentions is erro-

neous. For missing answer diagnosis u is treated the same as t—a sub-computation

which finitely fails contrary to our intentions is also erroneous. This simple gen-

eralisation of the three-valued scheme allows us to use four-valued interpretations

and find bugs corresponding to instances of definitions where the head is u but the

body is not.

For example, an atom such as interpret("main:-main.") may be considered

admissible, since its argument is well-formed. However, it is not intended to ter-

minate and if it succeeds (or finitely fails) we would like a tool to help debug it.

With four values, we can say this atom is u and if the atom appears in the node

of a proof tree, the node would therefore be considered erroneous and amenable

to declarative debugging. The intended interpretation is not a ⊒4-model and the

debugger is able to diagnose why.

Intuition may suggest the debugger would need four classes of nodes for the four

truth values. However, the classes of nodes do not all correspond to truth values in

the intended interpretation. They correspond to the comparison between the truth

value in the intended interpretation and the observed behaviour (or the truth value

in the least model of the program). Note that the observed behavior is two-valued in

these uses of declarative debugging—the computation must succeed or finitely fail.

Inadmissible nodes correspond to a comparison using ⊐ (which only holds when the
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intended value is i). Correct nodes correspond to =. Erroneous nodes correspond

to incomparability for three-valued interpretations but they may also correspond

to ⊏ in the four-valued case. Thus four-valued interpretations add some flexibility

to declarative debuggers with very little additional cost.

12 Computation and the information ordering

The logic programming paradigm introduced the view of computation as deduction

(Kowalski 1980). Classical logic was used and hence computation was identified with

the truth ordering. With Prolog programs viewed as Horn clauses, :- is classical←,

or ≥ in the truth ordering. We view the Prolog arrow as ⊒4, which naturally leads

to identifying computation with the information ordering rather than the truth

ordering. In this section we sketch this alternative view of the logic programming

paradigm. The information ordering ordering holds if we compare successive states

of a computation using a correct program (that is, the intended interpretation is a

⊒4-model). Because H ⊒ B for each head grounding, replacing a subgoal by the

body of its definition (a basic step in a logic programming computation) gives us a

new goal which is lower (or equal) in the information ordering (see Proposition 8).

This view is obscured if we view Prolog computation as SLD derivations because

SLD derivations include the “success continuation” of the current sub-goal but not

the “failure continuation”—the alternatives which would be explored on backtrack-

ing. We view a computation state as a disjunction of (conjunctive) goals. This is

equivalent to a frontier of nodes in an SLD tree rather than a single node (or a

single goal in an SLD derivation). Free variables are those appearing in the top-

level goal; other variables are existentially quantified. A computation step selects

a node from the frontier (a disjunct), then selects a subgoal within it (a conjunct).

For simplicity, we do not deal with negation here. A more detailed model of logic

programming computation in this style would also include propagation of failure

from unsatisfiable equations.

Definition 10 (Computation state, successsor state)

A computation state S is a formula of the form ∃V (D1 ∨ . . . ∨ Dm), with each Di

a conjunction of literals Ci,1 ∧ . . .∧Ci,m i . Let (Ci,j , ∃W (B1 ∨ . . .∨Bn)) be a head

instance of a definition, with variables in W renamed so they are distinct from those

in S . Let D ′ be (Ci,1 ∧ . . .Ci,j−1 ∧B1 ∧Ci,j+1 . . .∧Ci,m i )∨ . . .∨ (Ci,1 ∧ . . .Ci,j−1 ∧

Bn ∧ Ci,j+1 . . . ∧ Ci,m i ). Then S ′ = ∃V ∃W (D1 ∨ . . .Di−1 ∨D ′ ∨Di+1 . . . ∨Dm) is

a successor state of S .

Given a top-level Prolog goal, the intended interpretation gives a truth assign-

ment for each ground instance. Subsequent resolvents can also be given a truth

assignment for each ground instance of the variables in the top level goal (with

local variables considered existentially quantified). As the computation progresses,

the truth value assignment for each instance often remains the same, but can be-

come lower in the information ordering.
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Proposition 8

If S ′ is the successor state of S , θ is a grounding substitution for just the free

variables in S (and S ′) and interpretation M is a ⊒4-model of the program, then

M (Sθ) ⊒4 M (S ′θ).

Proof

Since variables in W are not in S , S ′θ = (∃V (D1 ∨ . . .Di−1 ∨ (∃WD ′)∨Di+1 . . .∨

Dm)θ. Since variables in W are not in Ci,k for k 6= j and De Morgan’s laws hold

for 4, D ′θ = (Ci,1 ∧ . . .Ci,j−1 ∧ ∃W (B1 ∨ . . . ∨Bn) ∧Ci,j+1 . . . ∧Ci,m i )θ. Since M

is a ⊒4-model, M (Ci,j θ) ⊒ M (∃W (B1 ∨ . . . ∨ Bn)θ). The result follows from the

monotonicity of ∧ and ∨.

For example, consider the goal implies(X,f) (where implies was defined in Sec-

tion 2). Our intended interpretation maps implies(f,f) to t and implies(t,f) to

f , but may map implies(42,f) to i, if the first argument is expected to be input.

After one step of the computation we have the conjunction neg(X,U), or(U,f,t)

(where U is local to the computation and hence existentially quantified). If our in-

tended interpretation allows any mode for neg, the instance where X = 42 is then

mapped to f .

We believe that having a complete lattice using the information ordering pro-

vides an important and fundamental insight into the nature of computation. At

the top of the lattice we have an element which corresponds to underspecification

in the mind of a person. At the bottom of the lattice we have an element which

corresponds to a the inability of a machine or formal system to compute or de-

fine a value. The transitions between the meanings we attach to specifications and

correct programs, and successive execution states of a correct program, follow the

information ordering, rather than the truth ordering.

13 Related work

Denecker et al. (2001) discuss the use of inductive definition in mathematical logic.

They develop a general theory of induction over non-monotone operators, and at the

same time provide strong justification for the well-founded semantics (Van Gelder

et al. 1991; Fitting 1993) for logic programs with negation. The view of Denecker

et al. (2001) is that recursive logic programs represent inductive definitions — the

view to which we, with this paper, also subscribe. Denecker et al. (2001) is not

concerned with intended semantics and specification, but the authors still make

essential use of four-valued (as opposed to three-valued) logic, albeit primarily for

reasons of technical convenience.

Arieli (Arieli 2002) similarly gives a fixed point characterisation of the mean-

ing of logic programs. One aim is to provide a language that supports knowledge

revision and reasoning with uncertainty. Arieli’s logic programming language has

two kinds of negation, namely explicit negation (¬) and negation-by-failure (not).

The proposed semantics allows for paraconsistency, that is, the handling of locally

inconsistent information in a way that does not lead to the entire program being

considered inconsistent. That context naturally leads to the use of Belnap’s logic.



34 L. Naish and H. Søndergaard

Loyer et al. (2004) are similarly concerned with an extended language. In this

case, the language is that of “Fitting programs”, the kind of logic programs used by

Fitting (1991a), with the usual connectives “duplicated” for the bilattice 4. Loyer

et al. (2004) extend Fitting’s work on reasoning in a distributed (or multi-agent)

setting. The semantic framework they propose separates “hypotheses” from “facts”

and is broad enough that, when restricted to Datalog programs, it generalises both

Fitting’s “Kripke-Kleene” semantics (Fitting 1985) and the well-founded semantics

(Van Gelder et al. 1991). The framework, which again is based on four-valued logic,

provides what can be seen as a well-founded semantics for Fitting programs.

Many-valued logics have also long been advocated outside the logic programming

community, but the take-up there has arguably been more limited. In Section 10 we

briefly mentioned the aims and ideas of the Vienna Development Method (VDM).

This school has long argued that since programs, functions, and procedures that

are written in a Turing complete language may be partial, some sort of “logic for

partial functions” is needed, and that such a logic necessarily is three-valued. As

an extension, Arieli and Avron (1996; 1998) have argued the case for four-valued

logic.

Starting with McCarthy (1963), many have argued in favour of many-valued log-

ics in which connectives such as ∧ and ∨ are no longer commutative. For example,

in McCarthy’s logic, t ∨ u is equivalent to t, but u ∨ t is equivalent to u (whereas

in K3 it is t as well). The lack of commutativity makes these connectives imple-

mentable in a sequential programming language, and it corresponds closely to how

the connectives are defined in most modern programming languages. As an example

of the use of many-valued logic with non-commutative conjunction, Barbuti et al.

(1998) give a pure-Prolog semantics which is designed to closely mirror Prolog’s

depth-first left-to-right evaluation strategy. The logic has four truth values, and

the roles of u, f, and t are conventional. However, the fourth value, denoted tu , is

very different to i. Its operational-semantics reading is that it stands for divergence

preceded by success. Another example of the use of non-commutative conjunction is

the three-valued logic proposed by Avron and Konikowska (2009) which combines

K3 (for reasoning about parallel constructs) with McCarthy’s logic (for reasoning

about sequential constructs).

Morris and Bunkenburg (1998) are concerned with program refinement in the

presence of partiality and non-determinism (in program statements and/or in spec-

ifications). They present a four-valued calculus over a language which includes a

(non-monotone) “defined” predicate, a device also used in LPF.

Chechik et al. (2003) use Belnap’s 4-valued logic for the analysis of so-called mixed

transition systems (Dams et al. 1997). Transitions in mixed transition systems

carry a modality (may or must) with no assumption that a “must” transition also

necessarily is a “may” transition. As a consequence, it is possible for a property to

both hold and not hold.

Nishimura (2010) uses the simple 4-valued bilattice 4 in a variant of refinement

calculus. Predicate transformers are developed for a small language of program

statements, including an exception catching primitive, for use with abnormal pro-

gram behaviour (division by zero, say) as well as with explicit programmer-raised
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exceptions. Nishimura’s use of 4, however, does not reflect a need to capture vary-

ing degrees of information content. Rather, four-valued logic is used to provide an

elegant encoding trick. In Nishimura’s setting, wp(S , ϕn , ϕe) expresses the weakest

condition which, when it holds before program statement S , will ensure that, either,

S terminates normally, making ϕn true, or else S terminates abnormally, making

ϕe true. The four-valued lattice provides a convenient way of representing the four

possible states of the pair 〈ϕn , ϕe〉.

The use of many-valued logic for reasoning about programs has also had its

detractors who argue that abandoning classical logic complicates things, for in-

sufficient gain. Gries and Schneider (1995) are concerned that three-valued logics

abandon the law of the excluded middle, so that the schema ϕ ∨ ¬ϕ no longer is

valid. They point out that, if u⇔ u is valid (and they insist that every instance of

ϕ⇔ϕ ought to be valid) then the bi-implication connective⇔ fails to be associative,

since we otherwise would have

f ≡ t⇔ f ≡ (u⇔ u)⇔ f ≡ u⇔ (u⇔ f) ≡ u⇔ u ≡ t

that is, we would have inconsistency. They conclude that three-valued logic is too

complicated to use and favour staying instead with 2-valued logic by somehow side-

stepping non-denoting terms. Problematic terms should be carefully prefixed to

avoid non-denotation. For example, “y/y = 1” should systematically be replaced

by “y 6= 0⇒ y/y = 1”.

To us it seems that Gries and Schneider (1995) ask for too much. It is only to

be expected that the law of the excluded middle will be lost once we allow non-

denoting terms in statements. And in the context of non-denoting terms, taking

u⇔u as valid would seem counter-intuitive. It is a stretch to consider the statement

n/0 = 42 ⇔ n/0 = 5 valid, given that 42 6= 5. A far more natural approach is to

consider that statement ill-defined, that is, being neither true nor false. As for the

guarding of a formula ϕ by conditions that ensure all terms in ϕ are denoting, that

is hardly a practical solution when the terms involved stem from a Turing complete

language—in place of “y/y = 1” consider being confronted with “f (y) = 1”, where

f has been given a (possibly complex) recursive definition.

14 Conclusion

Four-valued logic has previously been suggested as a tool for reasoning about pro-

gram behaviour in the context of partiality, non-determinism and underspecifica-

tion. In a logic programming context, it has been used for parallel and distributed

programming, both as a language feature (Fitting 1991a) and an analysis tool

(Palmer 1997). In this paper we have argued that four-valued logic provides a han-

dle on many different situations that call for reasoning about logic programs, even

when we restrict attention to sequential programming. The applications include

program analysis, type and mode systems, formal specification, and declarative de-

bugging. Moreover, a semantics based on four truth values turns out to be no more

complex than one based on three.

Logicians have been aware of the limitations of formal systems since well before
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the invention of electronic computers. Gödel showed the impossibility of a complete

proof procedure for elementary number theory, hence important gaps between truth

and provability, and in any Turing-complete programming language there are pro-

grams which fail to terminate—undefinedness is unavoidable. Our awareness of

the limitations of humans in their interaction with computing systems goes back

even further. Babbage (1864) claims to have been asked by members of the Par-

liament of the United Kingdom, “Pray, Mr. Babbage, if you put into the machine

wrong figures, will the right answers come out”? The term “garbage in, garbage

out” was coined in the early days of electronic computing and concepts such as

“preconditions” have always been important in formal verification of software—

underspecification is also unavoidable in practice.

Using a special value to denote undefinedness is the accepted practice in pro-

gramming language semantics. Using a special value to denote underspecification

is less well established, but has been shown to provide elegant and natural reason-

ing about partial correctness, at least in the logic programming context. In this

paper we have proposed a domain for reasoning about Prolog programs which has

values to denote both undefinedness and underspecification—they are the bottom

and top elements of a bilattice. This gives an elegant picture which encompasses

both humans not making sense of some things and computers being unable to pro-

duce definitive results sometimes. The logical connectives Prolog uses in the body

of clauses operate within the truth order in the bilattice. However, the overall view

of computation does not operate in the truth order, it operates in the orthogonal

“information” order.
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