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Outline

Our intentions, our programs and what they compute

Simple equational reasoning

Problem: undefinedness; “fast and loose” equational reasoning

Problem: underspecification

Solution: tweaking equational reasoning

Conclusion

Aside: behind the scenes there are a whole lot of theoretical definitions
and theorems, some of which are works in progress
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Our intentions, programs and what they compute

Intention Program

Computation

p(x,y) {

t = x+y

x = t+y

:

Validation

Programming

Compilation
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Equational reasoning, evaluation and transformation

A simple functional program:

>length [] = 0

>length (x:xs) = 1 + length xs

View it as two mathematical equations describing an intended function

View evaluation/computation as “replacing equals by equals”:

length (1:2:[]) →
1 + length (2:[]) →
1 + 1 + length [] →
1 + 1 + 0 →
2

We can use laws for transformation/optimization, eg map f (map g ys)

= map (f.g) ys (saves creating and traversing an intermediate list)
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Equational reasoning and declarative debugging

If every equation is correct the result (if any) is correct

So if an incorrect result is computed there must be an incorrect equation

And a declarative debugger can find it!

The debugger needs 1) the program, 2) the expression/computation that
gives the wrong result and 3) the programmer intentions (an “oracle”)

Suppose we use 1 instead of 0 in the base case for length:

Does length (1:2:[]) equal 3? n
Does length (2:[]) equal 2? n
Does length [] equal 1? n
Incorrect equation:

length [] = 1
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Problem: undefinedness

Programming language functions are not quite mathematical functions:
they can have “infinite loops” (or pattern match failure, or other errors)

“Fast and loose reasoning is morally correct” points out that this results in
various intuitive laws being wrong, but we can get away with using them

>foo x = bar x

>bar x = ...

Naive equational reasoning says we can replace “bar x” by “foo x”

>foo x = foo x

In FP semantics infinite loops etc are modelled by a special “undefined”
value, ⊥ (the “bottom” value of a partial ordering)

The equation foo x = foo x is consistent with any intended function but
this definition gives no information to compute with
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The information ordering

The result of computing something of type Maybe Bool has the following
structure

Lines indicate the higher value is more defined or has more information

Nothing Just False Just True

Just ⊥

⊥
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Problem: underspecification

Our intention for a program function is not always a mathematical function

Consider the merge operation from mergesort

If the arguments are sorted lists the intended result is clear, otherwise we
typically don’t know or care what the result is

For “garbage in” all results are considered correct

What if a debugger asks:
Does merge [3,1] [3,2] equal [3,1,3,2]?

The best debuggers support y/n answers and also “inadmissibility”
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Forms of underspecification

One form of underspecification is “preconditions” that we expect to hold
for all calls (part of the “contract”)

We (try to) write code that ensures preconditions are always satisfied; if
not, the code that did the call is considered buggy

Another is having multiple representations for one (abstract) value

For example, we may choose to represent sets of integers as sorted lists
but allow duplicates: insert 1 [1,2,2] could return [1,1,2,2] or
[1,2,2] or [1,2]; all these would be considered correct

Both have implications for designing declarative debugger oracles
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Underspecification and equational reasoning

Consider the code below with the precondition that sets are represented as
sorted lists

>list_last = last -- Equation 1 (OK)

>set_max = maximum -- Equation 2 (OK)

>set_max’ = list_last -- Equation 3 (OK)

>list_last’ = set_max -- Equation 4 (Dubious)

Equations 3 and 4 are the same from the equational reasoning perspective
but (only) Equation 4 can cause a precondition violation:

list_last’ [2,1] →
set_max [2,1] →
maximum [2,1] → . . .

2
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Tweaking equational reasoning

Our intentions for set_max are similar to those for list_last but more
flexible because we only require set_max to work when the list is sorted

The set of (mathematical) functions that are considered correct
implementations of set_max is a superset of those for list_last

If we view the function names as sets of correct functions we have

list_last ⊇ last

set_max ⊇ maximum

set_max’ ⊇ list_last

list_last’ 6⊇ set_max

If the left side of each equation in the program is greater or equal to the
right side (according to our intentions and the set-based ordering), partial
correctness is guaranteed!
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An ordering for computed and intended values

Sets include all sets below them (⊥ and Just ⊥ are implicit in most sets)

{Nothing,Just False,Just True}

{Just False,Just True}{Nothing,Just True}{Nothing,Just False}

{Nothing,Just ⊥}

{Nothing} {Just False} {Just True}

{Just ⊥}

{⊥}
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Computation within this ordering

Most computation steps replace equals by equals and stay at the same
point in the ordering

Going lower in the ordering is also OK (under-specification)

Going “sideways” is wrong: it typically means returning a wrong result

Going higher is also wrong (violating a precondition gets you to the top)

If you go up, you can then go down a different path to get a wrong result
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Conclusion

Understanding the relationships between our intentions, programs and
computations helps with software development (including tools)

Functional programming languages provide a good foundation

Viewing function definitions as equations, and both our intentions and
what is computed as simple mathematical functions, is not quite right

Viewing definitions as inequations allows greater flexibility and various
pitfalls can be avoided

We can have an elegant theoretical framework: a partial order, where
“undefined” (nothing computed) and “don’t know/care” (nothing
intended) are at opposite ends
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