
Similarity to a single set

Lee Naish
Computing and Information Systems

University of Melbourne

(a work in progress)

Lee Naish (CIS) Similarity to a single set November 7, 2015 1 / 1



Outline

The problem

Set similarity measures

Properties of set similarity measures

scaling

monotonicity

symmetries

Relative “weight” of matches versus non-matches

Choosing a similarity measure

An experiment

Conclusion

Lee Naish (CIS) Similarity to a single set November 7, 2015 2 / 1



The problem

Suppose we have a finite number of cases, some subset of which have a
particular attribute, the base attribute

There are also a number of other attributes each case may have

The problem is to rank all these attributes according to how well they
“correlate” with the base attribute

Equivalently, we say the base set B is the set of cases with the base
attribute, etc, and we rank sets according to how “similar” they are to the
base set

This “STASS” problem is pervasive in science. For example, we might
want to know why certain things have some attribute. Finding a
correlation can be the first step in determining a cause.

It can be generalised to similarity of arbitrary pairs of sets, correlation of
non-binary attributes, clustering, interestingness of association rules, . . .
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The problem

More terminology: M = |B| and N = |B̄|
Comparison of sets B and A can be viewed as follows:

A Ā Total

B m o M

B̄ n p N
m o

n p

Set similarity can be measured by a numeric function f (m, n, o, p) and the
results used to rank the sets/attributes

Because the base set fixes M and N we use these as parameters instead of
o and p, and write f MN (m, n)
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Example: program spectra for debugging

Estimate the relative likelihood of statements being buggy by correlating
execution of statements in a test case with failure of the test case

M is the number of failed tests, N the number of passed tests, m the
number of failed tests which execute a particular statement and n the
number of passed tests which execute the statement

C1 C2 C3 C4 C5 m n
S1 1 0 0 1 0 1 1
S2 1 1 0 1 0 2 1
S3 1 1 1 0 1 2 2

...
Base 1 1 0 0 0 M = 2 N = 3
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Set similarity measures

Many similarity measures have been used, in a wide variety of domains

Name Formula Name Formula

Jaccard m
M+n Tarantula

m
M

m
M

+ n
N

Russell m
M+N Zoltar m

M+n+ 10000(M−m)n
m

Rogers m+N−n
M+N Cosine m√

M(m+n)

Faith
m+ 1

2
(N−n)

M+N Pearson Nm−Mn√
MN(m+n)(M+N−m−n)

Ample2 m
M −

n
N Ample

∣∣m
M −

n
N

∣∣
Op m − n

N+1 Added Value m
max(M,m+N−n)

Wong3 m − h, where h =


n if n ≤ 2
2 + 0.1(n − 2) if 2 < n ≤ 10
2.8 + 0.001(n − 10) if p > 10

What is the best one for my problem?
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A geometrical view

A STASS problem can be viewed a collection of points in a rectangular
domain, which we need to rank

m

n

M

N
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Set similarity measures

Set similarity measures can be viewed as a surface over the domain

f ()

n

m

(0, 0)

(0,N)

(M,N)
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Properties of set similarity measures

There are many properties of set similarity measures which seem desirable,
eg, for philosophical reasons

Some of these properties are incompatible

Some of them are overly restrictive, at least for the STASS problem

For example, we only care about the relative value of two measures (which
point is ranked higher), not the “absolute” value of a measure

We use the result of comparison of two numbers x and y :
C (x , y), is 1 if x > y , 0 if x = y and -1 if x < y

Also, we only care about relative values where M and N the same for the
two points
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Uniform scalability

We would expect that the ranking would be preserved if M, N, m and n
were all multiplied by some scaling factor s

Eg, a measure f is absolute uniform scalable if

f MN (m, n) = f sMsN (sm, sn)

For STASS we propose a “relative” rather than “absolute” definition

A measure f is uniform scalable if

C (f MN (m, n), f MN (m′, n′)) = C (f sMsN (sm, sn), f sMsN (sm′, sn′))
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General scalability, Null invariance

Often the cases with the base attribute are collected separately from those
without the base attribute. The relationship between M and N is
determined by the experimental design rather than the underlying domain

A measure f is general scalable if

C (f MN (m, n), f MN (m′, n′)) = C (f sMtN (sm, tn), f sMtN (sm′, tn′))

Adding extra cases which don’t have the base attribute or any of the other
attributes (arguably) should not affect the ranking

A measure f is null-invariant if for all points where f is defined and all k

C (f MN (m, n), f MN (m′, n′)) = C (f MN+k(m, n + k), f MN+k(m′, n′ + k))

Other papers define “absolute” versions of these properties
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Monotonicity

A measure f is monotone if it is monotonically increasing in m and
monotonically decreasing in n

C (m,m′) = C (f MN (m, n), f MN (m′, n))

C (n, n′) = −C (f MN (m, n), f MN (m, n′))

For many measures these conditions hold for most of the domain, but not
when m = 0, for example

They can often be tweeked to make them monotone, eg Jaccard-m can be
defined as (m + ε)/(M + n), or we can add ε only when m = 0

Proposition: No measure is absolute general scalable, absolute
null-invariant and monotone (but our weaker definitions allow it, eg, Op)
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Symmetries

There are 16 different reflections/rotations (basic symmetries) of a
surface. We can invert the surface. We can swap n with N − n. We can
swap m with M −m. We can swap m with n and M with N.

Only three such transformations preserve monotonicity

Reflection in m = n and inversion: f is nm-antisymmetric if

C (f MN (m, n), f MN (m′, n′)) = −C (f NM (n,m), f NM (n′,m′))

180◦ rotation and inversion: f is m̄n̄-antisymmetric if

C (f MN (m, n), f MN (m′, n′)) = −C (f MN (M −m,N − n), f MN (M −m′,N − n′))

Reflection in m = n and 180◦ rotation: f is n̄m̄-symmetric if

C (f MN (m, n), f MN (m′, n′)) = C (f NM (N − n,M −m), f NM (N − n′,M −m′))

We can define three duals of a surface/similarity measure, eg Dn̄m̄(f )
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Correlation antisymmetry and weight symmetry

The line m = n is important for the basic symmetries, but the line of
statistical independence is Nm = Mn, between (0, 0) and (M,N)

Points above this line have positive correlation and points below have
negative correlation; we may have anti-symmetry around this line

f is nm-scaled-antisymmetric, or correlation-antisymmetric, if

C (f MN (m, n), f MN (m′, n′)) = −C (f MN (Mn/N,Nm/M), f MN (Mn′/N,Nm′/M))

(We generalise to non-integers)

Similarly, we may have symmetry around the line Mn = MN − Nm,
between points (M, 0) and (0,N)

A measure f is n̄m̄-scaled-symmetric, or weight-symmetric, if

C (f MN (m, n), f MN (m′, n′)) =

C (f MN (M −Mn/N,N − Nm/M), f MN (M −Mn′/N,N − Nm′/M))
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Basic symmetries, M = N

m

n

m = n

m = M − n

Reference

nm

n̄m̄

m̄n̄
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Basic symmetries, M 6= N

m

n

m = n

Reference

nm

n̄m̄

m̄n̄
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Scaled symmetries, M 6= N

m

n

Nm = Mn

Nm = MN −Mn

Reference

nm

n̄m̄

m̄n̄
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Relative weight of m and n

Many measures place more importance or weight on matches (m) than
non-matches (n)

For Jaccard, m/(M + n), doubling m requires more than doubling n to
compensate (n has less weight)

f wM
N g (f has greater or equal set m-weight than g for M and N) if

1 if m ≥ m′ then C (f MN (m, n), f MN (m′, n′)) ≥ C (gM
N (m, n), gM

N (m′, n′))

2 if m < m′ then C (f MN (m, n), f MN (m′, n′)) ≤ C (gM
N (m, n), gM

N (m′, n′))

For given M and N, monotone measures form a complete lattice

Op is the top element (maximal set m-weight) and its weight-dual
Dw (Op) is the bottom element

The lattice is symmetric, with f wM
N g iff Dw (g) wM

N Dw (f )

Lee Naish (CIS) Similarity to a single set November 7, 2015 18 / 1



Contours of some measures

M

N−M Jacccard-m

M

N0 Tarantula

M

NRogers

M

NFaith

M

NAmple2
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Quantifying the relative weight of m and n

We can also quantify the relative m-weight by ranking all points in the
domain and seeing how similar the ordering is to Op and Dw (Op) (we
scale the number of inversions so Op is 1, Dw (Op) is 0 and
weight-symmetric measures are 0.5)

M N Kul2 Cos Zol J D-J Tar
10 50 0.79 0.72 0.78 0.65 0.35 0.50
30 30 0.79 0.81 0.78 0.82 0.18 0.50
50 10 0.89 0.93 0.77 0.96 0.04 0.50

Or we can just look at (eg) the top-most corner of the domain

M N Kul2 Cos Zol J D-J Tar
10 50 0.33 0.22 0.49 0.16 0.84 0.03
30 30 0.65 0.66 0.59 0.67 0.33 0.03
50 10 0.93 0.94 0.62 0.95 0.05 0.04
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Using domain knowledge to choose a measure

From previous results we know Op is the best possible measure for
debugging programs with a single bug. We have used simple models of the
debugging problem. Eg, there is a single bug which is executed half the
time and causes failure half the time it is executed (on average)

From a model we can create the most likely contingency table for just the
bugs (causes of the base attribute)

Ac Āc Total

B mc oc Mc

B̄ nc pc Nc

Ac Āc Total

B 25 0 25

B̄ 25 50 75

If there is a single bug, oc = 0 and bugs always appear at the top edge of
the domain (m = M)

Non-bugs are typically spread across the whole domain
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Ac Āc Total

B 25 0 25

B̄ 25 50 75

If there is a single bug, oc = 0 and bugs always appear at the top edge of
the domain (m = M)

Non-bugs are typically spread across the whole domain
Lee Naish (CIS) Similarity to a single set November 7, 2015 21 / 1



Using domain knowledge to choose a measure

For programs with deterministic bugs (which cause failure whenever they
are executed), nc = 0, so bugs always appear at the left edge of the
domain, and Dw (Op) is the best possible measure

From a contingency table for the causes, we can calculate the expected m
and n values scaled to the range 0–1, me = mc/Mc and ne = nc/Nc , and
the ideal m-weight: ne/(1−me + ne)

m/M

n/N

1.0 m/M

n/N

0.33
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An experiment with varying ideal m-weights . . .

m/M

n/N
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Six simple debugging models

if ... then S1;

if ... then S2;

if ... then S3;

if ... then S4;

Each statement S1–S4 has a 50% chance of being executed and if it is
buggy the test case has a certain chance of failing

We have experimented with a single bug model and five multiple bug
models with the latter chance being 20%, 40%, 60%, 80% and 100%,
respectively

The measures/surfaces we used were planes, varying from Op to Dw (Op)
(cm/M − (1− c)n/N with c varying from 1− ε down to ε)
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Experimental results

M1 M2 M3 M4 M5 M6
mc , oc 40, 0 56, 20 104, 40 144, 60 176, 80 200, 100
nc , pc 160, 200 144, 180 96, 160 56, 140 24, 120 0, 100
ideal 1 0.63 0.57 0.49 0.34 0
best plane 1 0.75 0.53 0.47 0.40 0
inversions 1 0.85 0.56 0.44 0.34 0

Op 89.14 86.19 89.17 90.62 91.22 91.25
P75 89.14 86.19 89.25 91.17 92.87 94.85
P53 88.94 86.08 89.50 92.17 94.65 97.44
P47 88.58 85.87 89.34 92.20 94.85 97.80
P40 88.00 85.59 89.00 92.02 94.88 97.93
Dw (Op) 73.87 81.51 86.51 90.87 94.60 98.02
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Further work

There can be multiple causes, with different expected values and
distributions

There can be multiple non-causes

There can be various ways of measuring performance

Some insights into STASS should be applicable to other more general
problems
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Conclusions

The STASS problem is pervasive but surprisingly poorly understood

Monotonicity is important

The scaled versions of symmetry are important

We now have greater understanding of how domain knowledge can be
used to choose and/or create measures which perform well
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