
Spectral Debugging with Weights and Incremental Ranking

Lee Naish
University of Melbourne
Melbourne, Australia

Email: lee@csse.unimelb.edu.au

Hua Jie Lee
University of Melbourne
Melbourne, Australia

Email: leehj@csse.unimelb.edu.au

Kotagiri Ramamohanarao
University of Melbourne
Melbourne, Australia

Email: rao@csse.unimelb.edu.au

Abstract—Software faults can be diagnosed using program
spectra. The program spectra considered here provide informa-
tion about which statements are executed in each one of a set of
test cases. This information is used to compute a value for each
statement which indicates how likely it is to be buggy, and the
statements are ranked according to these values. We present
two improvements to this method. First, we associate varying
weights with failed test cases — test cases which execute fewer
statements are given more weight and have more influence
on the ranking. This generally improves diagnosis accuracy,
with little additional cost. Second, the ranking is computed
incrementally. After the top-ranked statement is identified,
the weights are adjusted in order to compute the rest of the
ranking. This further improves accuracy. The cost is more
significant, but not prohibitive.

Keywords-software fault diagnosis; spectral debugging;
weights; incremental ranking

Keywords-software fault diagnosis; spectral debugging;
weights; incremental ranking

I. I NTRODUCTION

Despite the achievements made in software development,
bugs are still pervasive and diagnosis of software failures
remains an active research area. One of many useful sources
of data to help diagnosis is the dynamic behaviour of
software as it is executed over a set of test cases. Software
can be instrumented automatically to gather data such as the
statements that are executed in each test case. A summary
of this data, often called program spectra, can be used to
rank the parts of the program according to how likely it is
they contain a bug. Ranking is done by sorting based on
the value of a numeric function (we use the termranking
metric or simply metric) applied to the data for each part
of the program. We make the following contributions to this
area:

1) We propose a method of assigning weights to failed
tests which leads to more informative tests having
more influence on the ranking. Existing formulas for
ranking metrics can be used, but they are generalised
so the inputs are real numbers instead of integers.

2) We propose a method of incrementally producing the
ranking. After the top-ranked statement is determined,
the weights are adjusted in order to find the next
highest ranked statement, and so on.

Table I
EXAMPLE PROGRAM SPECTRA WITH TESTST1 . . . T5

T1 T2 T3 T4 T5 anp anf aep aef

Stat1 1 1 1 0 1 1 0 1 3
Stat2 1 1 0 1 0 1 1 1 2
Stat3 1 0 1 1 1 0 1 2 2
Stat4 0 1 0 0 1 1 2 1 1

...
Result 1 1 1 0 0

3) We evaluate performance of several metrics using the
conventional method and our proposed methods. Some
metrics have not previously been evaluated for soft-
ware error diagnosis. Others have been systematically
evaluated, but only on programs with a single bug;
here we include evaluation for programs with more
than one bug.

The rest of the paper is organized as follows. Section
II provides the necessary background on spectra-based di-
agnosis. Sections III and IV describe our methods for
varying weights of failed tests and generating the ranking
incrementally, respectively. Section V reports performance
results. Section VI discusses related work and in Section
VII we conclude.

II. BACKGROUND

A program spectrum is a collection of data that provides
a specific view of the dynamic behavior of software. It
contains information about the parts of a program that
were executed during the execution of several test cases.
In general the parts could be individual statements, basic
blocks, branches or larger regions such as functions. Here we
use individual statements. This is equivalent to considering
basic blocks, assuming normal termination (a statement
within a basic block is executed if and only if the whole
basic block is executed). During execution of each test case,
data is collected indicating the statements that are executed.
Additionally, each test case is classified as passed or failed.

For each statement, four numbers are ultimately produced.
They are the number of passed/failed test cases in which
the statement was/wasn’t executed. Adapting Abreu et al.
[1] we use the notation〈anp, anf , aep, aef 〉, where the first



part of the subscript indicates whether the statement was
executed (e) or not (n) and the second indicates whether the
test passed (p) or failed (f ). We use superscripts to indicate
the statement number where appropriate. For example,a3

ep

is the number of passed tests that executed statement 3. The
raw data can be presented as a matrix of binary numberses,t,
with one row for each program statement,s, and one column
for each test case,t, where each cell indicates whether a
particular statement is executed (the value is 1) or not (the
value is 0) for a particular test case. Additionally, there is
a (binary) vector indicating the result (0 for pass and 1 for
fail) of each test case. Here we assume the failed tests appear
first, numbered 1 toF , the total number of tests isT and the
number of statements isS. This data allows us to compute
the aij values,i ∈ {n, e} and j ∈ {p, f}. Table I gives an
example with five tests, the first three of which fail.

Applying a function that maps the fouraij values to a
single number (we call such functionsranking metrics) for
each statement allows us to rank the statements: those with
the highest metric values are considered the most likely to
be buggy. We would expect buggy statements to generally
have relatively highaef values and relatively lowaep. In the
example in Table I, statement 1 is used in all failed tests and
the lowest number of passed tests and thus has the highest
value for all sensible metrics. Statement 2 has the next
highest ranking since it is used in the next highest number of
failed tests and is also used in the lowest number of passed
tests. The best ordering of statements 3 and 4 is less clear
— statement 3 is used in more failed tests but also more
passed tests. Some metrics which perform well overall rank
statement 3 higher, others rank statement 4 higher and others
give them equal rank. Another way of viewing the ranking
is that rows of the matrix are ranked according to how
“similar” they are to the result vector. Many clustering and
classification problems can be formalised in this way, and
many ranking metrics come from areas other than software
diagnosis.

Diagnosis can proceed by the programmer examining
statements starting from the top-ranked statement until a
buggy statement is found. In reality, programmers are likely
to modify the ranking due to their own understanding of
whether the code is likely to be buggy, based on other
information such as static analysis, the history of software
changes,et cetera, and checking correctness generally can-
not be done by a single statement (or even one basic block)
at a time. Evaluation of different ranking methods generally
ignores such refinements and just depends on where the
bug(s) appear in the ranking.

The metrics we use in this paper are defined in Table II. In
the experiments we report on we have also used many other
metrics (most are described in more depth and evaluated for
software diagnosis in [2]) but for reasons of space we restrict
the number here. We include metrics which were originally
proposed for software diagnosis: Tarantula (a graphical

debugger [3], [4]), Zoltar [5], Wong3 (the best of several
metrics proposed in [6]),Op (the best of several metrics
proposed in [2]), and Ample2 (the better of the two general-
isations of the metric used in the AMPLE system [7] which
were evaluated in [2]). We also include all other metrics
which perform particularly well in any of our experiments:
McConnaughey (McCon) [8] (the best performing metrics in
our multiple-bug experiments, originally developed for the
study of plankton communities), Kulczynski2 [9], Fager [10]
and Pearson (from [11]). Finally, we include two particularly
well known metrics: Jaccard [12] (used in the PINPOINT
Java debugger [13], originally developed for the study of
plant communities) and Ochiai [14] (the best metric for
debugging evaluated in [1], originally developed for the
study of fish, also known as Cosine).

There is no single metric which is best in all situations.
The Op metric has been shown optimal with respect to a
simple performance measure for a class of simple single-bug
programs [2]. Wong3 and Zoltar are close to optimal and
these three metrics out-perform other metrics on realistic
single-bug programs using more reasonable measures of
performance. It seems likely that no substantially better
metrics exist for the single-bug case. However, we have
little understanding of the (more realistic) multiple bug case:
performance of previously proposed metrics have not been
systematically evaluated and it is unknown whether there are
substantially better metrics. One contribution we make here
is to evaluate performance of all these metrics on programs
with more than one bug (the McCon and Fager metrics
have not previously been evaluated at all for debugging).
However, our main contributions are methods which can be
applied withall such metrics.

III. VARYING WEIGHTS FOR FAILED TESTS

The idea behind varying weights comes from the fol-
lowing observations. First, some failed tests provide more
information than other failed tests. Consider the extreme
example of two failed tests, where one executes almost
every statement and the other executes only one statement.
The first test gives us little information whereas the second
test allows us to conclude with certainty that the executed
statement is buggy. By only using the number of failed
tests in which a statement is executed, this information is
lost. Second, although ranking metrics are normally applied
to natural numbers, they can be defined and used on real
numbers. With varying weights for failed tests theaef and
anf values we compute can be any real number between
zero and the number of failed tests. Of the dozens of
metrics proposed, none use integer-specific operations such
as modulo; no adaptation is needed for use with non-integral
aef andanf values.

The weights we use depend on the set ofsuspect(pos-
sibly buggy) statements,B. Initially this is the statements
executed in at least one failed test:{s|∃t, t ≤ F, es,t = 1}.



Table II
DEFINITIONS OF NEW RANKING METRICS USED

Name Formula Name Formula Name Formula

Kulczynski2 1
2

(

aef

aef +anf
+

aef

aef +aep

)

Zoltar
aef

aef +anf +aep+
10000anf aep

aef

Jaccard
aef

aef +anf +aep

Ochiai
aef√

(aef +anf )(aef +aep)
Fager

aef√
(aef +anf )(aef +aep)

− 1
2
√

aef +aep
Ample2

aef

aef +anf
− aep

aep+anp

Tarantula

aef
aef +anf

aef
aef +anf

+
aep

aep+anp

Pearson
(aef anp)−(anf aep)√

(aef +anf )(aef +aep)(anf +anp)(aep+anp)
Op aef − aep

aep+anp+1

Wong3 aef − h, whereh =

{

aep if aep ≤ 2
2 + 0.1(aep − 2) if 2 < aep ≤ 10
2.8 + 0.001(aep − 10) if aep > 10

McCon
aef

2
−anf aep

(aef +anf )(aef +aep)

In the incremental ranking method described later, this is
refined. We first define a relative weight,wt, for each test
t, which is (almost) inversely proportional to the number of
suspect statements executed in the test minus one:

wt =
1

∑

s∈B es,t − 1 + ǫ

We use a small constant,ǫ (we use 0.0001 in our code),
to avoid division by zero when there is only one suspect
statement executed. The weight given to a failed testt is
wtF/W , where F is the number of failed tests andW is the
sum of the relative weightswt over all failed tests:

∑F

t=1
wt.

The total weight of all failed tests is thus unaffected by the
weighting, so the overall impact of the failed tests (compared
to passed tests) is not changed. Also, if all failed tests
execute the same number of statements, all weights are 1
(and the method is equivalent to the conventional method).
To computeaef for a statement we take the sum of the
weights of failed tests in which it was executed, rather than
simply the number of tests:

as
ef =

∑

es,t=1

wtF/W

For example, with the data of Table I, if we ignoreǫ, the
relative weights for tests 1–3 are 1/2, 1/2 and 1, respectively,
and the weights are 0.75, 0.75 and 1.5, respectively. The
aef values for statements 1–4 are 3, 1.5, 2.25 and 0.75,
respectively. Theanf values can be computed using a similar
weighted sum (over the failed tests where the statement is
not executed), or we can simply use the total number of
failed tests minusaef . In this example, theanf values are
therefore 0, 1.5, 0.75 and 2.25, respectively. The greater
weight for test 3 leads toa3

ef being greater thana2

ef and
for most of the better metrics, this is sufficient to raise the
ranking of statement 3 above that of statement 2.

In general, the weightings result in more rational be-
haviour than the conventional method. If there is one failed
test which executes a single statements, that test will have
relative weight of1/ǫ and a weight close to one whereas
other weights will be close to zero. Thusas

ef will be close

to F andaef for other statements will be close to zero. The
better ranking metrics will ranks highest (it is as ifs is used
in all the failed tests and no other statement is used in any
failed test). Note that it is not rational to apply weighting
to passed tests in the same way. If a passed test executes a
single statement we cannot conclude the statement is correct,
since buggy statements sometimes produce correct results.
The weighted method we propose is not just a generic
method for determining “similarity” of a row of the matrix
with the result vector — it uses knowledge of the software
diagnosis domain.

Using weights does not change the algorithmic complexity
of ranking. If the whole matrix of execution data is stored,
computing the unweightedaij values takesΘ(ST ), process-
ing one statement at a time. The weighted method requires
additional processing of each failed test to determine the
weights, which takesO(ST ). The unweightedaij values
can be computed without storing the whole matrix, resulting
in Θ(S) space complexity instead ofΘ(ST ), by simply
keeping accumulators for each value and processing one
test at a time. The weighted values can be computed with
the same space complexity. After each failed test is run the
relative weight can be computed. Accumulators for relative
weights can be maintained as well as an accumulator for
the number of failed tests. After the last test is processed,
each accumulator of relative weights can be multiplied by
the total number of failed tests. Having computed theaij

values, the metric values can be determined and then sorted
in O(S log S) time to give the ranking, giving an overall
complexity ofO(ST + S log S) time.

IV. I NCREMENTAL RANKING

The model of debugging suggested by ranking statements
(by whatever method) is that the top-ranked statement is
considered first and the second-ranked statement is only
considered when the programmer has established the top-
ranked statement is correct. Although naive, this model is
typically assumed when evaluating performance of ranking
methods. It also allows us to use additional information to



refine the ranking, generating it incrementally. Once the top-
ranked statement has been decided, the other statements
can be ranked under theassumptionthat the top-ranked
statement isnot buggy. With a probabilistic approach, for
example, the statement with the highest probability of being
buggy would be ranked highest. The next highest ranking
would be the statement with the highest probability of being
buggygiven thatthe top-ranked statement is correct, and so
on.

Generating a ranking incrementally in this way is not
a particularly novel technique. However, it cannot refine
traditional (unweighted) spectral ranking because there is
no method of incorporating the additional information: the
metric value returned for a statement does not depend on
information about other statements. In contrast, the weighted
method introduced above depends on the set of suspect state-
ments. By no longer considering the top-ranked statement to
be suspect, the number of suspect statements executed in a
test decreases and the weights change, potentially changing
the ranking. For example, with the data of Table I, having
computed the metric values using the weighted method,
statement 1 is ranked highest with all sensible metrics. If
it is then not considered suspect, the number of suspect
statements executing tests 1–3 are 2, 2 and 1, respectively.
Thus test 3 has a relative weight of1/ǫ and statement 3
(the only remaining suspect statement executed in test 3) is
ranked highest by all sensible metrics. Note this ranking is
different (and more rational) than the ranking produced by
the traditional unweighted method discussed in Section II.

The algorithm is described in Figure 1. It uses the matrix
and result vector as inputs and outputs the ranking, a
sequence of statements. It terminates when all statements
executed in some failed test have been ranked. This ensures
a buggy statement appears in the ranking, and prevents
weights from becoming negative. In our example, it ter-
minates after ranking statements 1 and 3 — one of these
must be buggy so it is not necessary to consider the other
two statements at all in our search for a bug. When several
statements have the maximal metric value an arbitrary one
is chosen (our implementation picks one pseudo-randomly).

The time taken to find the top-ranked statement isΘ(ST ),
and the time taken to produce the entire ranking isO(S2T ).
This is a substantial increase in overall CPU time. However,
it is possible to compute the lower parts of the ranking in
parallel with manually checking correctness of the higher
ranked statements (though this does constrain the user in-
terface in a debugging tool). The manual checking is likely
to take more time so the main bottle-neck is determining
the top-ranked statement, which has acceptable complexity.
Space is another additional cost. Because the weights depend
on which statements are suspect, and this changes during
execution, the matrix (for failed tests at least) is required. If
the matrix is stored in main memory the space complexity
is Θ(ST ). The alternative is re-reading it from disk in each

iteration, reducing space complexity toΘ(S) but slowing the
algorithm by a substantial constant factor. Overall, although
the decrease in efficiency is significant, it does not make the
algorithm infeasible.

One way to reduce the CPU time is to use the incre-
mental method to rank only some statements, and rank the
remaining statements using the simpler weighted method
(with the remaining set of suspect statements). In Section
V we provide performance figures for ranking the top 10%
of statements incrementally. Another variation is to generate
the ranking “bottom-up” — starting with the lowest ranked
statement. This requires the whole ranking to be produced
before manual checking starts and our experiments (not
reported here) suggest the performance is poorer than the
“top-down” method.

V. EXPERIMENTS

We now discuss two sets of experiments performed to
evaluate the effectiveness of our algorithms. We compare the
traditional (unweighted) method with our weighted method
and our iterative method (used to rank all statements or just
the top 10%).

A. Benchmarks

We used two well-known benchmark sets, the Siemens
Test Suite and “Unix” (a collection of Unix utilities) [15]
which have been used in previous bug localization work
[1], [4], [16], [2]. These benchmarks contain multiple buggy
versions of several small C programs. In [2] Space (a
significantly larger C program) is used, along with the
Siemens Test Suite. The relative performance of the different
metrics was similar in both benchmarks sets, though the
absolute performance was substantially better for Space. The
compiler that we used was GCC Version 4.2.1 and the Gcov
tool was used to extract runtime statistics to compute the
program spectra. Gcov generates statistics for each line of
the program (including blank lines,et cetera); we ignored
lines that were never executed. All experiments were carried
out on a Pentium 4 PC running Ubuntu 6.06.

The first set of experiments we report on are for programs
with a single bug defined as follows (from [2]): a bug is a
statement that, when executed, has unintended behaviour.
For such programs, the buggy statement must be executed
in every failed test (this was used in the design ofOp

and is another example of asymmetry between passed and
failed tests). Programs with multiple bugs according to this
definition were eliminated from the benchmark set, along
with programs which had runtime errors (which prevent
Gcov returning statistics) and programs for which there were
no failed test cases. Table III lists the programs (the first
seven are the Siemens Test Suite programs; the rest are from
Unix), the number of versions of each in our single-bug (“1
Bug”) experiments and the number of test cases used.



incremental_ranking:
input: program spectra (binary matrix of execution data,

binary vector of test results)
output: ranking (sequence of statements)

ranking = empty
suspects = {all statements used in a failed test}
repeat

compute failed test weights using spectra and suspects
compute a_ij and metric values for each statement
s = a statement with maximum metric value
append s to ranking
suspects = suspects \ s

until there is a test that executes no suspect statements

Figure 1. Incremental ranking algorithm

Table III
NUMBER OF PROGRAM VERSIONS INBENCHMARKS

Program 1 Bug 2 Bugs Test Cases
tcas 37 604 1608
tot info 23 244 1052
schedule 8 — 2650
schedule2 9 29 2710
print tokens 6 — 4130
print tokens2 10 10 4115
replace 29 34 5542
Col 28 147 156
Cal 18 115 162
Uniq 14 14 431
Spline 13 20 700
Checkeq 18 56 332
Tr 11 17 870
TOTAL 224 1290 24458

Unfortunately, there are no good established multiple bug
program benchmarks. We generated programs with exactly
two bugs by taking pairs of single-bug versions of the same
program. We used single-bug programs where the bug was
in a single line of source code and eliminated versions with
runtime errors and those with no failed test cases, as before.
Table III summarises this “2 Bugs” benchmark set. Although
the benchmark set can clearly be improved, it gives us a
reasonable indication of what happens when we move away
from the single-bug case.

B. Performance measure

The performance measure we use isrank percentages,
used in various studies [1], [6], [2]. This is the rank of the
highest ranked buggy statement, expressed as a percentage
of the program size. For example, if the program has 200
lines of code and the highest ranked bug is the tenth in
the ranking, the rank percentage is 5%. If there are several
statements with equal rank, including the bug, we use the
average of the ranks. Because our incremental method uses
pseudo-random numbers to break ties, we ran each of these
experiments twenty times and took the average as the result.
The average rank percentages over all runs of all versions

of all programs are reported.

C. Hypothesis

Our main hypothesis is that the proposed incremental
method gives better performance (in terms of average rank
percentages) than the traditional (unweighted) method. We
test this hypothesis separately for each of the metrics con-
sidered. We provide additional figures so the main sources
of performance gain can be determined.

D. Results for single-bug programs

Table IV gives average rank percentages for single-bug
programs using the traditional (unweighted) ranking method,
our weighted method, the incremental algorithm for the top
10% of the ranking (and weighted method for the remain-
der), “10% Inc.”, and the incremental algorithm for the
entire ranking. The relative performance of metrics for the
unweighted method is consistent with that observed in [2],
except that Wong3 is (slightly) better than Zoltar. All metrics
show a small increase in performance for the weighted
method, with the exception ofOp, which has a very slight
decrease. There is also a small increase in performance for
the iterative method for all metrics except Tarantula. The
10% incremental method performs between the weighted
and incremental methods in most cases, as expected, but
there are several exceptions. Overall, the results give only
weak support for our hypothesis in the single bug case, but
we can say with reasonable confidence that performance
does not significantly degrade in this case.

The proof of optimality ofOp in [2] used a simple model
program and a performance measure which depended only
on how often the bug was ranked top. It was conjectured that
ranking methods which use the whole matrix (rather than
just theaij values) could not improve onOp for this case,
and our weighted and incremental methods do not improve
the results in this case. However, it was noted that the matrix
contains more information than theaij values and for more
realistic single-bug programs it may be possible to improve
performance (measured in a more reasonable way). Our



results here show a very small increase in performance but
it is not statistically significant. However, we are continuing
a more theoretical investigation.

Table IV
AVERAGE RANK PERCENTAGES FORSINGLE-BUG PROGRAMS

Metric Unweighted Weighted 10% Inc. Incremental
Op 17.86 17.87 17.73 17.76
Wong3 18.19 18.06 18.00 17.80
Zoltar 18.23 18.22 18.15 18.10
Kulczynski2 19.06 18.91 18.86 19.03
McCon 19.06 18.91 18.80 19.05
Fager 21.26 20.81 20.75 20.49
Ochiai 21.63 21.18 21.20 21.09
Pearson 23.56 23.27 23.24 23.00
Jaccard 23.64 23.09 23.16 23.06
Ample2 24.08 23.65 23.64 23.75
Tarantula 27.17 26.56 27.43 27.28

E. Results for two-bug programs

Table V
AVERAGE RANK PERCENTAGES FORTWO-BUG PROGRAMS

Metric Unweighted Weighted 10% Inc. Incremental
Kulczynski2 19.53 19.35 17.98 17.86
McCon 19.53 19.35 18.11 17.96
Fager 20.01 19.57 18.17 18.15
Ochiai 20.17 19.62 18.20 18.18
Zoltar 20.52 20.46 19.09 19.20
Pearson 21.08 20.26 18.86 18.82
Jaccard 21.10 20.38 19.03 18.99
Ample2 21.37 20.59 19.28 19.22
Wong3 22.54 22.44 21.07 20.97
Op 22.84 22.72 21.42 21.34
Tarantula 23.34 22.44 21.21 21.20

Table V gives average rank percentages for two-bug
programs. There is a consistent increase in performance for
all metrics from unweighted, through weighted and 10%
incremental to incremental, except for Zoltar, for which 10%
incremental has slightly better performance than incremen-
tal. The more consistent pattern apparent with 10% incre-
mental, compared to the single-bug figures, may be partly
due to the larger number of programs in the benchmark set.
However, both the weighted and incremental methods do
appear to increase performance significantly more for two-
bug programs than for single-bug programs. Overall there is
good support for our hypothesis in the two-bug case.

The relative performance of metrics is quite different to
the single-bug case.Op and Wong3 appear to be over-
optimised for the single-bug case and do not perform par-
ticularly well for two-bug program. Zoltar performs rather
better, even though the performance of these three metrics
is very similar for single-bug programs. Kulczynski2 and
McConnaughey perform well for both single and two-
bug programs and may be a good compromise. Tarantula
performs poorly. The absolute performance is better than
the single-bug case for some metrics (particularly the poorer
ones) because with more bugs, the top-ranked bug is likely

to be higher, even with random ranking. However, the best
performance in the single-bug case is better than the best
performance in the two-bug case. This may be due to the
fact that more effort has been put into developing metrics
for single-bug programs, but in some sense the single bug
case is a simpler problem, which may lead to better optimal
performance.

F. Threats to Validity

In this section, we briefly discuss the potential threats to
the validity of our conclusions above. Since the performance
of the methods depend on the programs used, we have
applied the Wilcoxon Rank-Sum test [17] to check the
statistical significance of the increased performance of the
incremental method compared with the unweighted method.
The increased performance was significant with a confidence
interval of greater than 95% for all metrics in the two-bug
case (this is the normal threshold for accepting a hypothesis).
In most of the single bug experiments this threshold was not
achieved.

We should actually be somewhat more conservative in
our statistical tests. There are two sources of variation
— the choice of buggy program and the psuedo-random
numbers used to break ties in the iterative method — and
these should not be combined. For example, although we
performed 224 × 20 = 4480 single-bug runs for each
metric, if the statistical tests assumed there were 4480
programs (instead of 224), the confidence would be greatly
exaggerated. However, the way we perfomed the tests may
also exaggerate the confidence if we happened to be “lucky”
with the pseudo-random numbers. Ideally, we should use
more repititions and/or use more refined statistical tests.

The size of the programs is clearly too small to draw
strong conclusions about typical programs, though in [2] it
is shown that performance of the unweighted method for
single-bug programs scales well (for the 9059 line Space
program the average rank percentage was 1.62, compared
with 16.00 for the Siemens Test Suite). We also have some
tentative results showing improved performance with the
incremental method on Space. Conclusions for multiple bug
programs must also be tentative due to the limitations of our
benchmark set.

VI. OTHER RELATED WORK

Instead of using information on statement executions,
some systems use information onpredicates(such as con-
ditions of if statements) being executed and evaluating to
true or false. The CBI (Collaborative Bug Isolation) system
[18] gathers such information and ranks predicates using a
metric, essentially the same as the unweighted method. Our
weighted and incremental methods seem easy to adapt to
such a system.

The SOBER system [19] also ranks predicates but uses a
non-binary matrix containing frequency counts (for example,



how often a predicate evaluated to true in a test). The number
of times a predicate is true in each passed test forms a
distribution; similarly for each failed test. Ranking is based
on the evaluation biaswhich is an established statistical
measure of difference between the two distributions for each
predicate. A direct comparison with the spectral approach we
have investigated is difficult. However, we know there are
asymmetries in the way passed and failed tests are best dealt
with and an understanding of this may help improve systems
such as SOBER. We are considering methods which use a
non-binary matrix (execution counts of statements) to affect
the weight of passed tests.

The work of [20] on “parallel debugging” attempts to clus-
ter failed test cases, so the clusters correspond to different
bugs. Such techniques may be help improve performance
of spectral diagnosis. They generate a benchmark set with
versions of the Space program with eight bugs (generated
from the single-bug versions). We use essentially the same
technique (but have two bugs and use Siemens Test Suite
and Unix programs).

VII. C ONCLUSION

We have proposed two enhancements to the traditional
spectral ranking method for diagnosing software errors.
The first is to have variable weights for different failed
tests, dependent on the number of statements executed in
the tests. This has a rational basis and does not affect
the algorithmic complexity. The second is to compute the
ranking incrementally, and relies on the first method. It gave
a statistically significant improvement in performance for
all metrics examined in the two-bug case. For the single-
bug case it also improved performance for all but one
metric, though for most metrics the improvement was not
statistically significant. It makes the algorithmic complexity
worse but does not seem prohibitively expensive.

For single-bug programs the traditional spectral ranking
method has “hit a wall” with respect to improving per-
formance by developing better ranking metrics, and our
methods may suffer from the same limitation. The results for
two-bug programs are of interest for two reasons. There have
been no previous experiments comparing the performance of
multiple ranking metrics using large numbers of programs
with more than one bug, so they are a significant contribution
to our quest for the best overall ranking metric. They also
show the methods we have proposed can lead to good perfor-
mance improvements comparted to the traditional method.

One theme which has emerged from our work is the
asymmetry between passed and failed tests. The better
ranking metrics have a bias towards failed tests (the relative
importance ofaef andaep in the formulas, for example). For
Op this was part of the design. For others, it seems more the
result of tinkering and experimentation using benchmarks
that consist of mostly single-bug programs. For others, there
is no consideration of the software diagnosis domain as the

metrics were developed for other domains. Our proposal for
varying weights of tests is also rational for failed tests but not
passed tests. It works well for software diagnosis but it may
not be appropriate for other domains. Although diagnosis
can be thought of in the same way as other clustering
techniques, domain-specific knowledge can be important in
maximising performance.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. van Gemund, “An Evaluation
of Similarity Coefficients for Software Fault Localization,”
Proceedings of the 12th Pacific Rim International Symposium
on Dependable Computing, pp. 39–46, 2006.

[2] L. Naish, H. Lee, and K. Ramamohanarao, “A Model for
Spectra-based Software Diagnosis,”TOSEM, To appear.

[3] J. Jones, M. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,”Proceedings of the
24th international conference on Software engineering, pp.
467–477, 2002.

[4] J. Jones and M. Harrold, “Empirical evaluation of the Taran-
tula automatic fault-localization technique,”Proceedings of
the 20th IEEE/ACM international Conference on Automated
software engineering, pp. 273–282, 2005.

[5] A. Gonzalez, “Automatic Error Detection Techniques based
on Dynamic Invariants,” Master’s thesis, Delft University of
Technology, The Netherlands, 2007.

[6] W. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective Fault
Localization using Code Coverage,”Proceedings of the 31st
Annual International Computer Software and Applications
Conference-Vol. 1-(COMPSAC 2007)-Volume 01, pp. 449–
456, 2007.

[7] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug
localization with AMPLE,” Proceedings of the Sixth sixth
international symposium on Automated analysis-driven de-
bugging, pp. 99–104, 2005.

[8] B. McConnaughey, “The determination and analysis of plank-
ton communities,”Marine Research, Special No, Indonesia,
pp. 1–40, 1964.

[9] F. Lourenco, V. Lobo, and F. Bação, “Binary-based similarity
measures for categorical data and their application in Self-
Organizing Maps,”JOCLAD, 2004.

[10] R. Sokal and P. Sneath,Principles of numerical taxonomy.
San Francisco: W.H. Freeman, 1963.

[11] B. Everitt, S. Landau, and M. Leese, “Cluster Analysis. 2001,”
Arnold, London, 2001.

[12] P. Jaccard, “́Etude comparative de la distribution florale dans
une portion des Alpes et des Jura,”Bull. Soc. Vaudoise Sci.
Nat, vol. 37, pp. 547–579, 1901.

[13] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem determination in large, dynamic internet
services,”Proceedings of the 2002 International Conference
on Dependable Systems and Networks, pp. 595–604, 2002.



[14] A. Ochiai, “Zoogeographic studies on the soleoid fishes found
in Japan and its neighbouring regions,”Bull. Jpn. Soc. Sci.
Fish, vol. 22, pp. 526–530, 1957.

[15] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact,”Empirical Software Engineering,
vol. 10, no. 4, pp. 405–435, 2005.

[16] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect
of test set minimization on fault detection effectiveness,”
Proceedings of the 17th international conference on Software
engineering, pp. 41–50, 1995.

[17] M. Hollander and D. Wolfe, “Nonparametric statistical meth-
ods,” New York, p. 518, 1973.

[18] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan,
“Scalable statistical bug isolation,”Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation, vol. 40, no. 6, pp. 15–26, 2005.

[19] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober:
statistical model-based bug localization,”SIGSOFT Softw.
Eng. Notes, vol. 30, no. 5, pp. 286–295, 2005.

[20] J. Jones, J. Bowring, and M. Harrold, “Debugging in parallel,”
Proceedings of the 2007 international symposium on Software
testing and analysis, pp. 16–26, 2007.


