Spectral Debugging with Weights and Incremental Ranking

Lee Naish Hua Jie Lee Kotagiri Ramamohanarao
University of Melbourne University of Melbourne University of Melbourne
Melbourne, Australia Melbourne, Australia Melbourne, Australia

Email: lee@csse.unimelb.edu.au Email: leehj@csse.unimelb.edu.au Email: rao@csse.unimelb.edu.au

Abstract—Software faults can be diagnosed using program EXAMPLE PROGRAM SlikélTeRlA WITH TESTY) ... T
spectra. The program spectra considered here provide informa-
tion about which statements are executed in each one of a set of
test cases. This information is used to compute a value for each Ty | T | T3 | Ty | T5 || anp | Gng | Gep | Gey
statement which indicates how likely it is to be buggy, andthe [Stati || 1 [1 [1 | 0 | 1 1 0 113
statements are ranked according to these values. We present S:a? i é 2 i 2 é i % g
two improvements to this method. First, we associate varying Stth 5 T 5 5 1 T 5 1 1
. . . . 4
weights with failed test cases — test cases which execute fewer
statements are given more weight and have more influence :
on the ranking. This generally improves diagnosis accuracy, [Resuf[[T [T [T [0 [0 |
with little additional cost. Second, the ranking is computed
incrementally. After the top-ranked statement is identified,
the weights are adjusted in order to compute the rest of the
ranking. This further improves accuracy. The cost is more 3) We evaluate performance of several metrics using the
significant, but not prohibitive. conventional method and our proposed methods. Some
Keywords-software fault diagnosis; spectral debugging; metrics have not previously been evaluated for soft-
weights; incremental ranking ware error diagnosis. Others have been systematically
Keywords-software fault diagnosis; spectral debugging; evaluated, but only on programs with a single bug;
weights; incremental ranking here we include evaluation for programs with more
than one bug.
I. INTRODUCTION The rest of the paper is organized as follows. Section

. . . Il provides the necessary background on spectra-based di-
Despite the achievements made in software developmen&gnosis_ Sections Il and IV describe our methods for

bugs.are still pervasive and diagnosis of software failure§/arying weights of failed tests and generating the ranking
remains an active research area. One of many useful Sourcﬁ%rementally, respectively. Section V reports perforon

of data to he_lp diagnosis is the dynamic behaviour Ofresults. Section VI discusses related work and in Section
software as it is executed over a set of test cases. Softwa(ﬁI we conclude

can be instrumented automatically to gather data such as the
statements that are executed in each test case. A summary I[l. BACKGROUND
of this data, often called program spectra, can be used t0 A program spectrum is a collection of data that provides
rank the parts of the program according to how likely it is 5 gpecific view of the dynamic behavior of software. It
they contain a bug. Ranking is done by sorting based 0Rqntains information about the parts of a program that
the value of a numeric function (we use the teramking \were executed during the execution of several test cases.
metric or simply metric) applied to the data for each part|, general the parts could be individual statements, basic
of the program. We make the following contributions to this y5cks, branches or larger regions such as functions. Here w
area. use individual statements. This is equivalent to considgeri
1) We propose a method of assigning weights to failecbasic blocks, assuming normal termination (a statement
tests which leads to more informative tests havingwithin a basic block is executed if and only if the whole
more influence on the ranking. Existing formulas for basic block is executed). During execution of each test,case
ranking metrics can be used, but they are generalisedata is collected indicating the statements that are esdcut
so the inputs are real numbers instead of integers. Additionally, each test case is classified as passed odfaile
2) We propose a method of incrementally producing the For each statement, four numbers are ultimately produced.
ranking. After the top-ranked statement is determined;They are the number of passed/failed test cases in which
the weights are adjusted in order to find the nextthe statement was/wasn't executed. Adapting Abreu et al.
highest ranked statement, and so on. [1] we use the notatiofa,,p, anf, aep, aer), Where the first

part of the subscript indicates whether the statement wadebugger [3], [4]), Zoltar [5], Wong3 (the best of several
executed €) or not () and the second indicates whether themetrics proposed in [6])0? (the best of several metrics
test passedp] or failed (f). We use superscripts to indicate proposed in [2]), and Ample2 (the better of the two general-
the statement number where appropriate. For examgle, isations of the metric used in the AMPLE system [7] which
is the number of passed tests that executed statement 3. Tivere evaluated in [2]). We also include all other metrics
raw data can be presented as a matrix of binary numagrs which perform particularly well in any of our experiments:
with one row for each program statemefitand one column McConnaughey (McCon) [8] (the best performing metrics in
for each test case, where each cell indicates whether a our multiple-bug experiments, originally developed foe th
particular statement is executed (the value is 1) or not (thstudy of plankton communities), Kulczynski2 [9], Fager]10
value is 0) for a particular test case. Additionally, these i and Pearson (from [11]). Finally, we include two particiylar
a (binary) vector indicating the result (O for pass and 1 forwell known metrics: Jaccard [12] (used in the PINPOINT
fail) of each test case. Here we assume the failed tests mappe#ava debugger [13], originally developed for the study of
first, numbered 1 td”, the total number of tests i6 and the plant communities) and Ochiai [14] (the best metric for
number of statements iS. This data allows us to compute debugging evaluated in [1], originally developed for the
the a;; values,i € {n,e} andj € {p, f}. Table | gives an study of fish, also known as Cosine).
example with five tests, the first three of which fail. There is no single metric which is best in all situations.
Applying a function that maps the four;; values to a The O metric has been shown optimal with respect to a
single number (we call such functiomanking metricy for simple performance measure for a class of simple single-bug
each statement allows us to rank the statements: those wifirograms [2]. Wong3 and Zoltar are close to optimal and
the highest metric values are considered the most likely tahese three metrics out-perform other metrics on realistic
be buggy. We would expect buggy statements to generallgingle-bug programs using more reasonable measures of
have relatively high:.; values and relatively low.,. Inthe performance. It seems likely that no substantially better
example in Table I, statement 1 is used in all failed tests andhetrics exist for the single-bug case. However, we have
the lowest number of passed tests and thus has the highditle understanding of the (more realistic) multiple buase:
value for all sensible metrics. Statement 2 has the nexperformance of previously proposed metrics have not been
highest ranking since it is used in the next highest number ofystematically evaluated and it is unknown whether these ar
failed tests and is also used in the lowest number of passeslbstantially better metrics. One contribution we makes her
tests. The best ordering of statements 3 and 4 is less cle& to evaluate performance of all these metrics on programs
— statement 3 is used in more failed tests but also morevith more than one bug (the McCon and Fager metrics
passed tests. Some metrics which perform well overall rankave not previously been evaluated at all for debugging).
statement 3 higher, others rank statement 4 higher andsothelHowever, our main contributions are methods which can be
give them equal rank. Another way of viewing the ranking applied withall such metrics.
is that rows of the matrix are ranked according to how
“similar” they are to the result vector. Many clustering and
classification problems can be formalised in this way, and The idea behind varying weights comes from the fol-
many ranking metrics come from areas other than softwarowing observations. First, some failed tests provide more
diagnosis. information than other failed tests. Consider the extreme
Diagnosis can proceed by the programmer examininggxample of two failed tests, where one executes almost
statements starting from the top-ranked statement until avery statement and the other executes only one statement.
buggy statement is found. In reality, programmers areyikel The first test gives us little information whereas the second
to modify the ranking due to their own understanding oftest allows us to conclude with certainty that the executed
whether the code is likely to be buggy, based on othestatement is buggy. By only using the number of failed
information such as static analysis, the history of sofewar tests in which a statement is executed, this information is
changeset cetera and checking correctness generally can-lost. Second, although ranking metrics are normally agplie
not be done by a single statement (or even one basic blockp natural numbers, they can be defined and used on real
at a time. Evaluation of different ranking methods gengrall numbers. With varying weights for failed tests thgr and
ignores such refinements and just depends on where the,; values we compute can be any real number between
bug(s) appear in the ranking. zero and the number of failed tests. Of the dozens of
The metrics we use in this paper are defined in Table Il. Irmetrics proposed, none use integer-specific operatiors suc
the experiments we report on we have also used many othes modulo; no adaptation is needed for use with non-integral
metrics (most are described in more depth and evaluated far.; anda, s values.
software diagnosis in [2]) but for reasons of space we @stri The weights we use depend on the setso$pect(pos-
the number here. We include metrics which were originallysibly buggy) statements3. Initially this is the statements
proposed for software diagnosis: Tarantula (a graphicaéxecuted in at least one failed te$|3¢, ¢t < F,es; = 1}.

IIl. VARYING WEIGHTS FOR FAILED TESTS

Table I

DEFINITIONS OF NEW RANKING METRICS USED

Name Formula Name Formula Name Formula
Kulczynski2 | 1 Gef Gef Zoltar Gef Jaccard T S—
Y 2 \ @eftang Geftaep acf+anf+a€p+100m:7"’fm Geftapftacp
ef
Ochiai Sef Fager el - L Ample2 Gef _ __ dep
V0 (acrtanys)(acrtacy) 9 V0(aesFang)(acstaep) 2y /acstaecp P Geftang deptanp
o;
+a (acfanp)—(angaep) ae
Tarantula ZefTonf Pearson cfdnp)” dnfdep or Qo — —cp
et V(acs Tang) (e Taep)(@nstanp) (@eptanp) ef T acpFanptl
Qep if aep <2 N
Wong3 acp —h, whereh = ¢ 2+ 0.1(aep — 2) if 2 <aep <10 McCon %
2.8 4 0.001(aep — 10) i aep > 10 ef Ting Rfes Ten

In the incremental ranking method described later, this igo " anda.s for other statements will be close to zero. The
refined. We first define a relative weighty, for each test better ranking metrics will rank highest (it is as ifs is used
t, which is (almost) inversely proportional to the number ofin all the failed tests and no other statement is used in any
suspect statements executed in the test minus one: failed test). Note that it is not rational to apply weighting
1 to passed tests in the same way. If a passed test executes a
single statement we cannot conclude the statement is torrec
Y oscptst—1l+e .)
since buggy statements sometimes produce correct results.
We use a small constant,(we use 0.0001 in our code), The weighted method we propose is not just a generic
to avoid division by zero when there is only one suspecimethod for determining “similarity” of a row of the matrix
statement executed. The weight given to a failed test with the result vector — it uses knowledge of the software
w /W, where F is the number of failed tests aidis the diagnosis domain.
sum of the relative weights; over all failed testsy;, w. Using weights does not change the algorithmic complexity
The total weight of all failed tests is thus unaffected by theof ranking. If the whole matrix of execution data is stored,
We|ght|ng, so the overall impaCt of the failed tests (COI’BﬂaI’ Computing the unwe|ghteddu values take@(ST), process-
to passed tests) is not changed. Also, if all failed testshg one statement at a time. The weighted method requires
execute the same number of statements, all weights are Jgditional processing of each failed test to determine the
(and the method is equivalent to the conventional method)yeights, which take)(ST). The unweighteds;; values
To computea.; for a statement we take the sum of the can be computed without storing the whole matrix, resulting
weights of failed tests in which it was executed, rather thanp, O(S) space complexity instead od(ST), by simply
simply the number of tests: keeping accumulators for each value and processing one
s test at a time. The weighted values can be computed with
Gef = Z we F/W the same space complexity. After each failed test is run the
co=1 relative weight can be computed. Accumulators for relative
For example, with the data of Table I, if we ignorethe weights can be maintained as well as an accumulator for
relative weights for tests 1-3 are 1/2, 1/2 and 1, respégtive the number of failed tests. After the last test is processed,
and the weights are 0.75, 0.75 and 1.5, respectively. Theach accumulator of relative weights can be multiplied by
acs values for statements 1-4 are 3, 1.5, 2.25 and 0.7%he total number of failed tests. Having computed the
respectively. The,,; values can be computed using a similar values, the metric values can be determined and then sorted
weighted sum (over the failed tests where the statement i; O(Slog S) time to give the ranking, giving an overall
not executed), or we can simply use the total number otomplexity of O(ST + Slog S) time.
failed tests minusi.s. In this example, the:,; values are
therefore 0, 1.5, 0.75 and 2.25, respectively. The greater V.
weight for test 3 leads ta?, being greater tham?, and
for most of the better metrics, this is sufficient to raise the The model of debugging suggested by ranking statements
ranking of statement 3 above that of statement 2. (by whatever method) is that the top-ranked statement is
In general, the weightings result in more rational be-considered first and the second-ranked statement is only
haviour than the conventional method. If there is one failedconsidered when the programmer has established the top-
test which executes a single statementhat test will have ranked statement is correct. Although naive, this model is
relative weight of1/e and a weight close to one whereas typically assumed when evaluating performance of ranking
other weights will be close to zero. Thug, will be close methods. It also allows us to use additional information to

we =

INCREMENTAL RANKING

refine the ranking, generating it incrementally. Once thge to iteration, reducing space complexity@{.S) but slowing the

ranked statement has been decided, the other statememtgorithm by a substantial constant factor. Overall, altfio

can be ranked under thassumptionthat the top-ranked the decrease in efficiency is significant, it does not make the

statement isnot buggy. With a probabilistic approach, for algorithm infeasible.

example, the statement with the highest probability of §ein One way to reduce the CPU time is to use the incre-

buggy would be ranked highest. The next highest rankingnental method to rank only some statements, and rank the

would be the statement with the highest probability of beingremaining statements using the simpler weighted method

buggygiven thatthe top-ranked statement is correct, and so(with the remaining set of suspect statements). In Section

on. V we provide performance figures for ranking the top 10%
Generating a ranking incrementally in this way is not of statements incrementally. Another variation is to gater

a particularly novel technique. However, it cannot refinethe ranking “bottom-up” — starting with the lowest ranked

traditional (unweighted) spectral ranking because there istatement. This requires the whole ranking to be produced

no method of incorporating the additional information: the before manual checking starts and our experiments (not

metric value returned for a statement does not depend oreported here) suggest the performance is poorer than the

information about other statements. In contrast, the we@jh “top-down” method.

method introduced above depends on the set of suspect state-

ments. By no longer considering the top-ranked statement to V. EXPERIMENTS

be suspect, the number of suspect statements executed in

test decreases and the weights change, potentially ctgangin %Ye tnO\t/r: d|s#:ust§ two setfs of ﬁxpe.;ﬁnentivperformed ttr?
the ranking. For example, with the data of Table I, havingeva uate the eflectiveness of our aigorithms. We compare

computed the metric values using the weighted methodtraw“t'cwflI (un_welghted) method with our weighted methpd
statement 1 is ranked highest with all sensible metrics. Imed our iterative method (used to rank all statements or just

it is then not considered suspect, the number of suspeé?e top 10%).

statements executing tests 1-3 are 2, 2 and 1, respectivelx. Benchmarks

Thus test 3 has a relative weight dfe and statement 3 "~

(the only remaining suspect statement executed in test 3) is We used two well-known benchmark sets, the Siemens
ranked highest by all sensible metrics. Note this ranking isTest Suite and “Unix” (a collection of Unix utilities) [15]
different (and more rational) than the ranking produced bywhich have been used in previous bug localization work
the traditional unweighted method discussed in Section Il. [1], [4], [16], [2]. These benchmarks contain multiple bygg

The algorithm is described in Figure 1. It uses the matrixversions of several small C programs. In [2] Space (a
and result vector as inputs and outputs the ranking, aignificantly larger C program) is used, along with the
sequence of statements. It terminates when all statemen&emens Test Suite. The relative performance of the diftere
executed in some failed test have been ranked. This ensureetrics was similar in both benchmarks sets, though the
a buggy statement appears in the ranking, and prevengbsolute performance was substantially better for Spauwe. T
weights from becoming negative. In our example, it ter-compiler that we used was GCC Version 4.2.1 and the Gcov
minates after ranking statements 1 and 3 — one of thestol was used to extract runtime statistics to compute the
must be buggy so it is not necessary to consider the othgirogram spectra. Gcov generates statistics for each line of
two statements at all in our search for a bug. When severdhe program (including blank linegt ceterd; we ignored
statements have the maximal metric value an arbitrary ontnes that were never executed. All experiments were drrie
is chosen (our implementation picks one pseudo-randomly)ut on a Pentium 4 PC running Ubuntu 6.06.

The time taken to find the top-ranked stateme®({$7), The first set of experiments we report on are for programs
and the time taken to produce the entire rankin@{$27"). with a single bug defined as follows (from [2]): a bug is a
This is a substantial increase in overall CPU time. Howeverstatement that, when executed, has unintended behaviour.
it is possible to compute the lower parts of the ranking inFor such programs, the buggy statement must be executed
parallel with manually checking correctness of the higherin every failed test (this was used in the design (of
ranked statements (though this does constrain the user iand is another example of asymmetry between passed and
terface in a debugging tool). The manual checking is likelyfailed tests). Programs with multiple bugs according ta thi
to take more time so the main bottle-neck is determiningdefinition were eliminated from the benchmark set, along
the top-ranked statement, which has acceptable complexitywith programs which had runtime errors (which prevent
Space is another additional cost. Because the weights depefBcov returning statistics) and programs for which thereawer
on which statements are suspect, and this changes durimp failed test cases. Table Il lists the programs (the first
execution, the matrix (for failed tests at least) is reqiiilé seven are the Siemens Test Suite programs; the rest are from
the matrix is stored in main memory the space complexityunix), the number of versions of each in our single-bug (“1
is ©(ST). The alternative is re-reading it from disk in each Bug”) experiments and the number of test cases used.

i ncrement al _r anki ng:
i nput: program spectra (binary matrix of execution data,
bi nary vector of test results)
out put: ranki ng (sequence of statenents)

ranki ng = enpty
suspects = {all statenents used in a failed test}

repeat
conpute failed test weights using spectra and suspects
conpute a_ij and netric values for each statenent

s = a statenent with nmaxi mum netric val ue
append s to ranking
suspects = suspects \ s
until there is a test that executes no suspect statenents

Figure 1. Incremental ranking algorithm

Table 111

NUMBER OF PROGRAM VERSIONS INBENCHMARKS of all programs are reported.
Program 1Bug | 2 Bugs | Test Cases C. Hypothesis
tcas 37 604 1608 . U .
fol_injo >3 ~ad 1057 Our main hypothesis is that thg proposed incremental
schedule 8 — 2650 method gives better performance (in terms of average rank
schedulf 2 29 ﬂég percentages) than the traditional (unweighted) method. We
print_tokens — . . . _
orint fokens? 0 0 115 te_st this hypothes_ls sepqr_ately fpr each of the m_etrlcs con
replace 29 34 5542 sidered. We provide additional figures so the main sources
Col 28 147 156 of performance gain can be determined.
Cal 18 115 162
Uniq 14 14 431 ;)
Spline 13 5 50 D. Results fgr single-bug programs |
Checkeq 18 56 332 Table IV gives average rank percentages for single-bug
%TAL 25 1222 24%% programs using the traditional (unweighted) ranking metho

l our weighted method, the incremental algorithm for the top

10% of the ranking (and weighted method for the remain-
, i der), “10% Inc.”, and the incremental algorithm for the
Unfortunately, there are no good established multiple bug,,iire ranking. The relative performance of metrics for the
program benchmarks. We generated programs with exactly, yeighted method is consistent with that observed in [2],
two bugs by taking pairs of single-bug versions of the same,, cent that Wong3 is (slightly) better than Zoltar. All niesr
program. We used single-bug programs where thg bug WaShow a small increase in performance for the weighted
in a single line of source code and eliminated versions Wlﬂ}nethod' with the exception ab?, which has a very slight
runtime errors and those with no failed test cases, as bemrﬁecrease. There is also a small increase in performance for
Table lll summarises this "2 Bugs” benchmark set. Althoughy,q jterative method for all metrics except Tarantula. The
the benchmark set can clearly be improved, it gives Us gy, jncremental method performs between the weighted
reasonable indication of what happens when we move away, jncremental methods in most cases, as expected, but

from the single-bug case. there are several exceptions. Overall, the results givg onl
B. Perf weak support for our hypothesis in the single bug case, but
- Feriormance measure we can say with reasonable confidence that performance

The performance measure we useramk percentages does not significantly degrade in this case.

used in various studies [1], [6], [2]. This is the rank of the The proof of optimality ofO? in [2] used a simple model
highest ranked buggy statement, expressed as a percentggegram and a performance measure which depended only
of the program size. For example, if the program has 20®n how often the bug was ranked top. It was conjectured that
lines of code and the highest ranked bug is the tenth imanking methods which use the whole matrix (rather than
the ranking, the rank percentage is 5%. If there are severdlist thea;; values) could not improve o®” for this case,
statements with equal rank, including the bug, we use thand our weighted and incremental methods do not improve
average of the ranks. Because our incremental method us#se results in this case. However, it was noted that the rmatri
pseudo-random numbers to break ties, we ran each of thesentains more information than the; values and for more
experiments twenty times and took the average as the resulealistic single-bug programs it may be possible to improve
The average rank percentages over all runs of all versiongerformance (measured in a more reasonable way). Our

results here show a very small increase in performance bub be higher, even with random ranking. However, the best
it is not statistically significant. However, we are contimy performance in the single-bug case is better than the best
a more theoretical investigation. performance in the two-bug case. This may be due to the
fact that more effort has been put into developing metrics
for single-bug programs, but in some sense the single bug
case is a simpler problem, which may lead to better optimal

Table IV
AVERAGE RANK PERCENTAGES FORSINGLE-BUG PROGRAMS

Metric Unweighted | Weighted | 10% Inc. | Incremental performance.
or 17.86 17.87 17.73 17.76
Wong3 18.19 18.06 18.00 17.80 o
Zoltar 18.23 18.22 18.15 18.10 F. Threats to Validity
Kulczynski2 || 19.06 18.91 18.86 19.03 In this section, we briefly discuss the potential threats to
'\F/';g%?” R LA TN I B:1 N 20 the validity of our conclusions above. Since the perforneanc
Ochiai 51.63 5118 2120 >1.09 of the methods depend on the programs used, we have
Pearson 23.56 23.27 23.24 23.00 applied the Wilcoxon Rank-Sum test [17] to check the
fr‘r‘]’gﬁerg A AR R U R statistical significance of the increased performance ef th
Taraniula 5717 56.56 5743 5728 incremental method compared with the unweighted method.
The increased performance was significant with a confidence
s 1 interval of greater than 95% for all metrics in the two-bug
E. Results for two-bug programs case (this is the normal threshold for accepting a hypashesi
Table In most of the single bug experiments this threshold was not
AVERAGE RANK PERCENTAGES FORTWO-BUG PROGRAMS achieved. . .
We should actually be somewhat more conservative in
Metric __[[Unweighted [Weighted [10% Inc. [Incremental our statistical tests. There are two sources of variation
Kulczynski2 || 19.53 19.35 17.98 17.86)
McCon 1953 1935 81T 1796 — the choice of buggy program and the psuedo-random
Fager 20.01 1957 18.17 18.15 numbers used to break ties in the iterative method — and
Ochiai 20.17 19.62 18.20 18.18 these should not be combined. For example, although we
Zoltar 20.52 20.46 19.09 19.20 » 4994 x 20 — 4480 sinale-b ; h
Pearson 21.08 2026 | 1886 | 18.82 performe x 2D = single-bug runs for eac
Jaccard 21.10 20.38 19.03 18.99 metric, if the statistical tests assumed there were 4480
Ample2 2137 20.59 19.28 19.22 programs (instead of 224), the confidence would be greatly
Wong3 22,54 22.44 21.07 20.97 d H h ; d th
or 5> ad 5575 147 5134 exaggerated. However, the way we perfomed the tests may
Tarantula 2334 22.44 21.21 21.20 also exaggerate the confidence if we happened to be “lucky”

with the pseudo-random numbers. Ideally, we should use

Table V gives average rank percentages for two-bugmore repititions and/or use more refined statistical tests.
programs. There is a consistent increase in performance for The size of the programs is clearly too small to draw
all metrics from unweighted, through weighted and 10%strong conclusions about typical programs, though in [2] it
incremental to incremental, except for Zoltar, for whicRd0 is shown that performance of the unweighted method for
incremental has slightly better performance than incremensingle-bug programs scales well (for the 9059 line Space
tal. The more consistent pattern apparent with 10% increprogram the average rank percentage was 1.62, compared
mental, compared to the single-bug figures, may be partlyith 16.00 for the Siemens Test Suite). We also have some
due to the larger number of programs in the benchmark setentative results showing improved performance with the
However, both the weighted and incremental methods déncremental method on Space. Conclusions for multiple bug
appear to increase performance significantly more for twoprograms must also be tentative due to the limitations of our
bug programs than for single-bug programs. Overall there ibenchmark set.
good support for our hypothesis in the two-bug case.

The relative performance of metrics is quite different to
the single-bug caseO? and Wong3 appear to be over- Instead of using information on statement executions,
optimised for the single-bug case and do not perform parsome systems use information predicates(such as con-
ticularly well for two-bug program. Zoltar performs rather ditions of if statements) being executed and evaluating to
better, even though the performance of these three metridsue or false. The CBI (Collaborative Bug Isolation) system
is very similar for single-bug programs. Kulczynski2 and [18] gathers such information and ranks predicates using a
McConnaughey perform well for both single and two- metric, essentially the same as the unweighted method. Our
bug programs and may be a good compromise. Tarantulaeighted and incremental methods seem easy to adapt to
performs poorly. The absolute performance is better thasuch a system.
the single-bug case for some metrics (particularly the @oor The SOBER system [19] also ranks predicates but uses a
ones) because with more bugs, the top-ranked bug is likelpon-binary matrix containing frequency counts (for exaenpl

VI. OTHER RELATED WORK

how often a predicate evaluated to true in a test). The numbenetrics were developed for other domains. Our proposal for
of times a predicate is true in each passed test forms warying weights of tests is also rational for failed testsrimt
distribution; similarly for each failed test. Ranking isseal = passed tests. It works well for software diagnosis but it may
on the evaluation biaswhich is an established statistical not be appropriate for other domains. Although diagnosis
measure of difference between the two distributions foheaccan be thought of in the same way as other clustering
predicate. A direct comparison with the spectral approaeh wtechniques, domain-specific knowledge can be important in
have investigated is difficult. However, we know there aremaximising performance.
asymmetries in the way passed and failed tests are best dealt
with and an understanding of this may help improve systems
such as SOBER. We are considering methods which use d1] R. Abreu, P. Zoeteweij, and A. van Gemund, “An Evaluation
non-binary matrix (execution counts of statements) tocaffe of Similarity Coefficients for Software Fault Localization,”

. Proceedings of the 12th Pacific Rim International Symposium
the weight of passed tests. . on Dependable Computingp. 39-46, 2006.

The work of [20] on “parallel debugging” attempts to clus-

ter failed test cases, so the clusters correspond to ditfere [2] L. Naish, H. Lee, and K. Ramamohanarao, “A Model for
bugs. Such techniques may be help improve performance SPectra-based Software DiagnosiSOSEM To appear.
of SPeCtral diagnosis. They genergte "’! benchmark set wit 3] J. Jones, M. Harrold, and J. Stasko, “Visualization of test
versions of the Space program with eight bugs (generated information to assist fault localizationProceedings of the
from the single-bug versions). We use essentially the same 24th international conference on Software engineeripg.
technique (but have two bugs and use Siemens Test Suite 467-477, 2002.
and Unix programs).

REFERENCES

[4] J. Jones and M. Harrold, “Empirical evaluation of the Taran-
tula automatic fault-localization techniqueRroceedings of
the 20th IEEE/ACM international Conference on Automated

We have proposed two enhancements to the traditional software engineeringpp. 273-282, 2005.

spectral ranking method for diagnosing software errors, [5] A. Gonzalez, “Automatic Error Detection Techniques based

The first is to have variable weights for different failed 7 on Dynamicylnvariants," Master's thesis, Delft University of

tests, depend_ent on the n_umber of_statements executed in Technology, The Netherlands, 2007.

the tests. This has a rational basis and does not affect

the algorithmic complexity. The second is to compute the [6] W. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective Fault

ranking incrementally, and relies on the first method. ltegav Localization using Code Coveragéfoceedings of the 31st
tatistically significant improvement in performance for Annual International Computer Software and Applications

as ucally sigi X P p - Conference-Vol. 1-(COMPSAC 2007)-Volume, @p. 449—

all metrics examined in the two-bug case. For the single- 456 2007.

bug case it also improved performance for all but one _ o _ _

metric, though for most metrics the improvement was not [7] Y le'ﬂ”m_e'erv Ch k‘&%ﬁéﬁry A. ﬁ?”er: '];'gr?twg!gf;]t b_Ugh

statistically significant. It makes the algorithmic comyite localization wit PLE," Proceedings of the Sixth sixt

L . international symposium on Automated analysis-driven de-
worse but does not seem prohibitively expensive. _ bugging pp. 99104, 2005.
For single-bug programs the traditional spectral ranking

method has “hit a wall” with respect to improving per- [8] B. McConnaughey, “The determination and analysis of plank-

formance by developing better ranking metrics, and our ton communities,"Marine Research, Special No, Indonesia

methods may suffer from the same limitation. The results for Pp. 1-40, 1964.

two-bug programs are of interest for two reasons. There havgg] F. Lourenco, V. Lobo, and F. Bag, “Binary-based similarity

been no previous experiments comparing the performance of =~ measures for categorical data and their application in Self-

multiple ranking metrics using large numbers of programs Organizing Maps,JOCLAD 2004.

with more than one bug, so they are aglgnlflcar)t contnbutlorho] R. Sokal and P. Sneatrinciples of numerical taxonomy

to our quest for the best overall ranking metric. They also ~ san Francisco: W.H. Freeman, 1963.

show the methods we have proposed can lead to good perfor- . .

mance improvements comparted to the traditional method.[11] B. Everitt, S. Landau, and M. Leese, “Cluster Analysis. 2001,

One theme which has emerged from our work is the Amold, London 2001.

asymmetry between passed and failed tests. The bettgfs) p, jaccard, Etude comparative de la distribution florale dans

ranking metrics have a bias towards failed tests (the velati une portion des Alpes et des Jur8ill. Soc. Vaudoise Sci.

importance ofz. ; anda,,, in the formulas, for example). For Nat, vol. 37, pp. 547-579, 1901.

0 tflltls \;v?s Eart of th%deSIQnZ Fortoi.hers’ It. Seetr)ns nr:ore T 13] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,

resuit o _'n ering an .experlmen ation using benchmar “Pinpoint: Problem determination in large, dynamic internet

that consist of mostly single-bug programs. For otherggthe services,”Proceedings of the 2002 International Conference

is no consideration of the software diagnosis domain as the on Dependable Systems and Netwpgs 595-604, 2002.

VIlI. CONCLUSION

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Ochiai, “Zoogeographic studies on the soleoid fishes found
in Japan and its neighbouring region8ull. Jpn. Soc. Sci.
Fish, vol. 22, pp. 526-530, 1957.

H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact,Empirical Software Engineering
vol. 10, no. 4, pp. 405435, 2005.

W. Wong, J. Horgan, S. London, and A. Mathur, “Effect

of test set minimization on fault detection effectiveness,”
Proceedings of the 17th international conference on Software
engineering pp. 41-50, 1995.

M. Hollander and D. Wolfe, “Nonparametric statistical meth-
ods,” New York p. 518, 1973.

B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan,
“Scalable statistical bug isolationProceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementationvol. 40, no. 6, pp. 15-26, 2005.

C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober:
statistical model-based bug localizatiorSIGSOFT Softw.
Eng. Notesvol. 30, no. 5, pp. 286—-295, 2005.

J. Jones, J. Bowring, and M. Harrold, “Debugging in parallel,”
Proceedings of the 2007 international symposium on Software
testing and analysjsp. 16-26, 2007.

